Skip to main content
Log in

Templating Approaches Using Natural Cellular Plant Tissue

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Biological preforms such as plant tissue offer a novel approach for manufacturing biomorphous ceramics with an anisotropic cellular micro- and macrostructure pseudomorphous to the natural template structure. Mimicking the hierarchical microstructure of the native template at different length scales from large vessels (mm) down to a cell wall microstructure (μm to nm) offers the possibility to tailor the local strut microstructure in biomorphous ceramics in order to improve mechanical properties at low density. Mineralization may be achieved by intercalation of the cell walls with an inorganic, metal organic, or organometallic sol. Heating above the pyrolysis temperature of the hydrocarbons forming the cell wall material in an inert atmosphere finally results in a positive replica of the cellular structure with a metal oxide/carbon composite forming the cell walls. Amorphous, nano- or microcrystalline C/Si-O-C(-N) composite materials are obtained by infiltration with a low viscosity preceramic polymeric precursor, such as polycarbosilane, -silazane, -siloxane, or a copolymer or mixture thereof. Pyrolysis into a biocarbon template and subsequent metal alloy melt or vapor infiltration and reaction at high temperatures above 1000°C is an alternate way to produce single and multiphase carbides and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mann, Biomineralization, Principles and Concepts in Bioorganic Materials Chemistry (Oxford University Press, Oxford, 2001).

    Google Scholar 

  2. P. Greil, J. Eur. Ceram. Soc. 21, 105 (2001).

    Google Scholar 

  3. T. Ota, M. Imeda, H. Takase, M. Kobayashi, N. Kinoshita, T. Hirashita, H. Miyazaki, Y. Hikichi, J. Am. Ceram. Soc. 83, 1521 (2000).

    Google Scholar 

  4. Y.S. Shin, J. Liu, J.H. Chang, Z.M. Nie, G. Exarhos, Adv. Mat. 13, 728 (2001).

    Google Scholar 

  5. C.R. Rambo, T. Andrade, T. Fey, H. Sieber, A.E. Martinelli, P. Greil, J. Am. Ceram. Soc. 91, 852 (2008).

    Google Scholar 

  6. A.S. Deshpande, I. Burgert, O. Paris, Small 2, 994 (2006).

    Google Scholar 

  7. Z.T. Liu, T.X. Fan, J. Ding, D. Zhang, Q.X. Guo, H. Ogawa, Ceram. Int. 34, 69 (2008).

    Google Scholar 

  8. P. Greil, T. Lifka, A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Google Scholar 

  9. T. Ota, M. Takahashi, T. Hibi, M. Ozawa, S. Suzuki, Y. Hikichi, H. Suzuki, J. Am. Ceram. Soc. 78, 3409 (1995).

    Google Scholar 

  10. B. Sun, T. Fan, D. Zhang, T. Okabe, Carbon 42, 177 (2004).

    Google Scholar 

  11. L.J. Gibson, Met. Mater. 8, 333 (1992).

    Google Scholar 

  12. P. Greil, E. Vogli, T. Fey, A. Betzold, N. Popovska, H. Gebhard, H. Sieber, J. Europ. Ceram. Soc. 22, 2697 (2002).

    Google Scholar 

  13. A.N. Shebani, A.J. van Reenen, M. Meincken, Thermochim. Acta 471, 43 (2008).

    Google Scholar 

  14. C. Zollfrank, R. Kladny, H. Sieber, P. Greil, J. Europ. Ceram. Soc. 24, 479 (2004).

    Google Scholar 

  15. C.J. Brinker, G.W. Scherer, Sol-Gel Science (Academic Press, London, 1990).

    Google Scholar 

  16. C.E. Byrne, D.C. Nagle, Carbon 35, 259 (1997).

    Google Scholar 

  17. O. Paris, C. Zollfrank, G.A. Zickler, Carbon 43, 53 (2005).

    Google Scholar 

  18. J. Yang, O.J. Ilgebusi, Composites Part A 31, 617 (2000).

    Google Scholar 

  19. H. Gern, Liquid Silicon Infiltration of Carbon/Carbon-Composites, PhD thesis, University of Stuttgart (1995).

  20. F.H. Gern, R. Kochendörfer, Composites Part A 28, 355 (1997).

    Google Scholar 

  21. E. Fitzer, R. Gadow, J. Am. Ceram. Soc. 65, 326 (1986).

    Google Scholar 

  22. F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano Lopez, M. Singh, J. Eur. Ceram. Soc. 22, 2719 (2002).

    Google Scholar 

  23. R.W. Rice, W.R. Grace, J. Mat. Sci. 31, 102 (1996).

    Google Scholar 

  24. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties (Pergamon Press, Oxford, 1997).

    Google Scholar 

  25. T. Fey, H. Sieber, P. Greil, J. Eur. Ceram. Soc. 25, 1015 (2005).

    Google Scholar 

  26. R.H.W. Hoppe, S.I. Petrova, Math. Comput. Simul. 74, 68 (2007).

    Google Scholar 

  27. A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Ferandez-Querro, M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).

    Google Scholar 

  28. A. Zampieri, P. Colombo, G.T.P. Mabande, T. Selvam, W. Schwieger, F. Scheffler, Adv. Mater. 17, 344 (2005).

    Google Scholar 

  29. M.H. Kostova, C. Zollfrank, M. Batentschuk, F. Goetz-Neunhoeffer, A. Winnacker, P. Greil, Adv. Funct. Mat. 19, 599 (2009).

    Google Scholar 

  30. P. Gonzales, J. Serra, S. Liste, S. Chiussi, B. Leon, M. Perez-Amor, J. Martinez-Fernandez, A.R. de Arellano-Lopez, F.M. Varela-Feria, Biomaterials 24, 4827 (2003).

    Google Scholar 

  31. L. Jonasova, F.A. Müller, H. Sieber, P. Greil, Key Eng. Mater. 254–256, 1013 (2004).

    Google Scholar 

  32. D. Haas, T. Fey, P. Greil, Adv. Eng. Mater. 9, 892 (2007).

    Google Scholar 

  33. B. Heidenreich, W. Krenkel, B. Lexow, in “Proc. 27th Int. Cocoa Beach Conf. on Adv. Ceram. Comp: A,” W.M. Kriven, H.-T. Lin, Eds. (The American Ceramic Society, Westerville, OH, 2003), pp. 375–381.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greil, P. Templating Approaches Using Natural Cellular Plant Tissue. MRS Bulletin 35, 145–149 (2010). https://doi.org/10.1557/mrs2010.635

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.635

Navigation