Skip to main content
Log in

Quantifying the Kinetics of Crystal Growth by Oriented Aggregation

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Oriented aggregation is a nonclassical crystal growth mechanism resulting in new secondary particles composed of crystallographically aligned primary crystallites. These secondary crystals often have unique and symmetry-defying morphologies, can be twinned, and can contain stacking faults and other significant defects. A wide range of materials, such as titanium dioxide, iron oxides, selenides and sulfides, and metal oxyhydroxides, are known to grow by oriented aggregation under certain conditions. Evidence for oriented aggregation also has been observed in natural materials. Over the last decade, reports of this crystal growth mechanism have appeared with increasing frequency in the scientific literature. The development of kinetic models aimed at improving our fundamental understanding as well as facilitating purposeful control over size, size distribution, and shape has ranged from simple dimer formation models to polymeric models and population balance models. These models have enabled detection and characterization of crystal growth by oriented aggregation using methods such as small-angle x-ray scattering, among others, in addition to transmission electron microscopy. As our fundamental understanding of oriented aggregation improves, novel and complex functional materials are expected to emerge. This article presents a summary of some recent results, methods, and models for characterizing crystal growth by oriented aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Banfield, S. Welch, H.Z. Zhang, T. Ebert, R.L. Penn, Science 289, 751 (2000).

    Google Scholar 

  2. R.L. Penn, J.F. Banfield, Am. Mineral. 83, 1077 (1998).

    Google Scholar 

  3. R.L. Penn, J.F. Banfield, Science 281, 969 (1998).

    Google Scholar 

  4. R.L. Penn, J.F. Banfield, Geochim. Cosmochim. Acta 63, 1549 (1999).

    Google Scholar 

  5. J.K. Bailey, C.J. Brinker, M.L. Mecartney, J. Colloid Interface Sci. 157, 1 (1993).

    Google Scholar 

  6. R.L. Penn, J. Phys. Chem. B 108, 12707 (2004).

    Google Scholar 

  7. Q. Zhang, S. Liu, S. Yu, J. Mater. Chem. 19, 191 (2009).

    Google Scholar 

  8. M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006).

    Google Scholar 

  9. S.L. Isley, R.L. Penn, J. Phys. Chem. C 112, 4469 (2008).

    Google Scholar 

  10. G. Oskam, A. Nellore, R.L. Penn, P. Searson, J. Phys. Chem. B 107, 1734 (2003).

    Google Scholar 

  11. R.L. Penn, G. Oskam, T. Strathmann, P. Searson, A. Stone, D. Veblen, J. Phys. Chem. B 105, 2177 (2001).

    Google Scholar 

  12. R.L. Penn, J.J. Erbs, D.M. Gulliver, J. Cryst. Growth 293, 1 (2006).

    Google Scholar 

  13. R.L. Penn, K. Tanaka, J.J. Erbs, J. Cryst. Growth 309, 97 (2007).

    Google Scholar 

  14. M. Ethayaraja, R. Bandyopadhyaya, Langmuir 23, 6418 (2007).

    Google Scholar 

  15. F. Huang, H.Z. Zhang, J.F. Banfield, Nano Lett. 3, 373 (2003).

    Google Scholar 

  16. D. Chiche, M. Digne, R. Revel, C. Chaneac, J.P. Jolivet, J. Phys. Chem. C 112, 8524 (2008).

    Google Scholar 

  17. H.C. Zeng, Int. J. Nanotechnol. 4, 329 (2007).

    Google Scholar 

  18. R.L. Penn, C. Zhu, H. Xu, D. Veblen, Geology 29, 843 (2001).

    Google Scholar 

  19. H. Cölfen, Top. Curr. Chem. 271, 1 (2007).

    Google Scholar 

  20. R. Song, H. Cölfen, A. Xu, J. Hartmann, M. Antonietti, ACS Nano 3, 1966 (2009).

    Google Scholar 

  21. A. Xu, Y. Ma, H. Cölfen, J. Mater. Chem. 17, 415 (2007).

    Google Scholar 

  22. K.M. Towe, W.U. Berthold, D.E. Appleman, J. Foraminiferal Res. 7, 58 (1977).

    Google Scholar 

  23. C. Ribeiro, E. Lee, E. Longo, E.R. Leite, ChemPhysChem 6, 690 (2005).

    Google Scholar 

  24. C. Ribeiro, E. Lee, E. Longo, E.R. Leite, ChemPhysChem 7, 664 (2006).

    Google Scholar 

  25. S. Ji, C. Ye, J. Mater. Sci. Technol. 24, 457 (2008).

    Google Scholar 

  26. A.S. Ratkovich, R.L. Penn, J. Phys. Chem. C 111, 14098 (2007).

    Google Scholar 

  27. T.O. Drews, M. Tsapatsis, Microporous Mesoporous Mater. 101, 97 (2007).

    Google Scholar 

  28. S. Kumar, Z. Wang, R.L. Penn, M. Tsapatsis, J. Am. Chem. Soc. 130, 17284 (2008).

    Google Scholar 

  29. S. Mintova, N.H. Olson, J. Senker, T. Bein, Angew. Chem. Int. Ed. 41, 2558 (2002).

    Google Scholar 

  30. U. Ziese, K.P. de Jong, A.J. Koster, Appl. Catal., A 260, 71 (2004).

    Google Scholar 

  31. N.S. Pesika, K.J. Stebe, P. Searson, J. Phys. Chem. B 107, 10412 (2003).

    Google Scholar 

  32. R. Viswanatha, S. Sapra, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Mater. Chem. 14, 661 (2004).

    Google Scholar 

  33. J.H. Yu, J. Joo, H.M. Park, S. Baik, Y.M. Kim, S.C. Kim, T. Hyeon, J. Am. Chem. Soc. 127, 5662 (2005).

    Google Scholar 

  34. C.E. Krill, R. Birringer, Philos. Mag. A 77, 621 (1998).

    Google Scholar 

  35. T.M. Davis, T.O. Drews, H. Ramanan, C. He, J.S. Dong, H. Schnablegger, M. Katsoulakis, E. Kokkoli, A. McCormick, R.L. Penn, M. Tsapatsis, Nat. Mater. 5, 400 (2006).

    Google Scholar 

  36. H. Cölfen, M. Antonietti, Mesocrystals and Nonclassical Crystallization. (Wiley, Sussex, 2008), p. 276.

  37. H.G. Yang, H.C. Zeng, Angew. Chem. Int. Ed. 43, 5930 (2004).

    Google Scholar 

  38. D. Van Hyning, W. Klemperer, C. Zukoski, Langmuir 17, 3128 (2001).

    Google Scholar 

  39. H. Zhang, D. Wang, Angew. Chem. Int. Ed. 47, 3984 (2008).

    Google Scholar 

  40. J. Zhang, Y. Wang, J. Zheng, F. Huang, D. Chen, Y. Lan, G. Ren, Z. Lin, C. Wang, J. Phys. Chem. B 111, 1449 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrows, N.D., Yuwono, V.M. & Penn, R.L. Quantifying the Kinetics of Crystal Growth by Oriented Aggregation. MRS Bulletin 35, 133–137 (2010). https://doi.org/10.1557/mrs2010.633

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.633

Navigation