Skip to main content

Advertisement

Log in

Materials Challenges in Photovoltaic Energy Generation in Space

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Virtually all spacecraft employ photovoltaic energy conversion for continuous power generation. Compared to their counterpart on Earth, photovoltaic modules in the space environment face a unique set of performance requirements. Among the most demanding ones are the need to have the highest possible specific power output with regard to mass and surface area while showing as little degradation as possible under intense particle and ultraviolet radiation during lifetimes of up to 15 years. In addition, the thermomechanical stresses induced by temperature fluctuations up to 200°C are not to result in additional electrical degradation. This article briefly outlines the state-of-the-art design solution to meet these requirements before it focuses on current materials issues in two core areas: On the solar cell itself, which requires new materials systems and cell concepts to surpass the efficiency of the lattice-matched triple junction solar cell technology, and on materials issues concerning the encapsulation of solar cells for space use. Closely linked to these materials challenges are testing-related issues that arise in verifying the expected material behavior during extended periods in the space environment. These are discussed in conjunction with the materials challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perlin, From Space to Earth: the Story of Solar Electricity (Aatec Publications, MI, 1999).

    Google Scholar 

  2. G. Strobl, P. Uebele, R. Kern, K. Roy, C. Flores, R. Campesato, C. Signorini, K. Bogus, in Proc. 24th IEEE Photovoltaic Specialists Conference (1994), p. 2124.

  3. N. Fatemi, S. Sharma, O. Buitrago, J. Crisman, P. Sharps, R. Blok, M. Kroon, C. Jalink, R. Harris, P. Stella, S. Distefano, in Proc. 31st IEEE Photovoltaic Specialists Conference (2005), p. 618.

  4. A. Suzuki, M. Kaneiwa, T. Saga, S. Matsuda, IEEE Trans. Electron Devices 46, 2126 (1999).

    Google Scholar 

  5. G. Strobl, P.G. Uebele, K.H. Tentscher, R. Kern, K.D. Rasch, K.P. Bogus, T. Robben, G. LaRoche, in Proc. 28th IEEE Photovoltaic Specialists Conference (2000), p. 1289.

  6. Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables (American Society for Testing and Materials, Philadelphia, 1992), Vol. ASTM-E 490-73a.

  7. M. Yamaguchi, A. Luque, IEEE Trans. Electron Devices 46, 2139 (1999).

    Google Scholar 

  8. J.M. Olson, S.R. Kurtz, A.E. Kibbler, P. Faine, Appl. Phys. Lett. 56, 623 (1990).

    Google Scholar 

  9. N.H. Karam, R.R. King, B.T. Cavicchi, D.D. Krut, J.H. Ermer, M. Haddad, L. Cai, D.E. Joslin, M. Takahashi, J.W. Eldredge, W.T. Nishikawa, D.R. Lillington, B.M. Keyes, R.K. Ahrenkiel, IEEE Trans. Electron Devices 46, 2116 (1999).

    Google Scholar 

  10. G. Timo, C. Flores, R. Campesato, Cryst. Res. Technol. 40, 1043 (2005).

    Google Scholar 

  11. C. Fetzer, B. Jun, K. Edmondson, S. Khemthong, K. Rouhani, R. Cravens, R. Bardfield, M. Gillanders, in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 1–4.

  12. M. Yamaguchi, T. Takamoto, K. Araki, N. Ekins-Daukes, Sol. Energy 79, 78 (2005).

    Google Scholar 

  13. R.R. King, C.M. Fetzer, P.C. Colter, K.M. Edmondson, J.H. Ermer, H.L. Cotal, H. Yoon, A.P. Stavrides, G. Kinsey, D.D. Krut, N.H. Karam, in Proc. 29th IEEE Photovoltaic Specialists Conference (2002), p. 776.

  14. N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Oshima, H. Itoh, M. Imaizumi, S. Matsuda, Appl. Phys. Lett. 79, 2399 (2001).

    Google Scholar 

  15. P.R. Sharps, A. Cornfeld, M. Stan, A. Korostyshevsky, V. Ley, B. Cho, T. Varghese, J. Diaz, D. Aiken, in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 1–6.

  16. S.R. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, B.E. Hammons, Appl. Phys. Lett. 74, 729 (1999).

    Google Scholar 

  17. A. Khan, S.R. Kurtz, S. Prasad, S.W. Johnston, J. Gou, Appl. Phys. Lett. 90, 243509 (2007).

    Google Scholar 

  18. R.R. King, C.M. Fetzer, D.C. Law, K.M. Edmondson, H. Yoo, G.S. Kinsey, D.D. Krut, J.H. Ermer, P. Hebert, B.T. Cavicchi, N.H. Karam, in Proc. 4th World Conference on Photovoltaic Energy Conversion (2006), p. 1757.

  19. F. Dimroth, C. Baur, A.W. Bett, M. Meusel, G. Strobl, in Proc. 31st IEEE Photovoltaic Specialists Conference (2005), p. 525.

  20. F. Dimroth, U. Schubert, A.W. Bett, IEEE Electron Device Lett. 21, 209 (2000).

    Google Scholar 

  21. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Google Scholar 

  22. W. Guter, J. Schöne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009).

    Google Scholar 

  23. M. Stan, D. Aiken, B. Cho, A. Cornfeld, J. Diaz, V. Ley, A. Korostyshevsky, P. Patel, P. Sharps, T. Varghese, J. Cryst. Growth 310, 5204 (2008).

    Google Scholar 

  24. J.F. Geisz, S. Kurtz, M.W. Wanlass, J.S. Ward, A. Duda, D.J. Friedman, J.M. Olson, W.E. McMahon, T.E. Moriarty, J.T. Kiehl, Appl. Phys. Lett. 91, 023502 (2007).

    Google Scholar 

  25. M. Stan, D. Aiken, B. Cho, A. Cornfeld, J. Diaz, A. Korostyshevsky, V. Ley, P. Patel, P. Sharps, T. Varghese, in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 1–6.

  26. V.G. Weizer, J.D. Broder, J. Appl. Phys. 53, 5926 (1982).

    Google Scholar 

  27. J. Isenberg, W. Warta, J. Appl. Phys. 95, 5200 (2004).

    Google Scholar 

  28. M.D. Abbott, J.E. Cotter, F.W. Chen, T. Trupke, R.A. Bardos, K.C. Fisher, J. Appl. Phys. 100, 114514 (2006).

    Google Scholar 

  29. C.G. Zimmermann, IEEE Electron Device Lett. 30, 825 (2009).

    Google Scholar 

  30. J.I. Vette, The AE-8 Trapped Electron Model Environment (NASA Publication NSSDC 91-24, 1991).

  31. D.M. Sawyer, J.I. Vette, AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum (NASA Publication NSSCE 76-06, 1976).

  32. Space Environment Information System (SPENVIS) website: www.spenvis.oma.be

  33. J. Feynman, G. Spitale, J. Wang, S. Gabriel, J. Geophys. Res. 98, 281 (1993).

    Google Scholar 

  34. B.E. Anspaugh, GaAs Solar cell Radiation Handbook (JPL Publication 96-9, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1996).

    Google Scholar 

  35. S.R. Messenger, G.P. Summers, E.A. Burke, R.J. Walters, M.A. Xapsos, Prog. Photovoltaics Res. Appl. 9, 103 (2001).

    Google Scholar 

  36. G.P. Summers, R.J. Walters, M.A. Xapsos, E.A. Burke, S.R. Messenger, P. Shapiro, R.L. Statler, in Proc. 24th IEEE Photovoltaic Specialists Conference (1994), p. 2068.

  37. S.R. Messenger, E.A. Burke, R.J. Walters, J.H. Warner, G.P. Summers, T.L. Morton, IEEE Trans. Nucl. Sci. 53, 3771 (2006).

    Google Scholar 

  38. G.P. Summers, S.R. Messenger, E.A. Burke, M.A. Xapsos, R.J. Walters, Appl. Phys. Lett. 71, 832 (1997).

    Google Scholar 

  39. S.R. Messenger, E.A. Burke, G.P. Summers, R.J. Walters, IEEE Trans. Nucl. Sci. 49, 2690 (2002).

    Google Scholar 

  40. R.L. Statler, D.J. Curtin, IEEE Trans. Electron Devices 18, 412 (1971).

    Google Scholar 

  41. J. Russell, G. Jones, in Proceedings of 1st International Energy Conversion Engineering Conference (IECEC) (AIAA-2003-6036, Portsmouth, VA, 2003).

  42. R.L. Crabb, in Proc. 9th IEEE Photovoltaic Specialists Conference (1972), p. 185.

  43. G.A. Haynes, Effect of Radiation on Cerium-Doped Solar-Cell Cover Glass, NASA TN D-6024 (1970).

  44. N.J. Kreidl, J.R. Hensler, J. Opt. Soc. Am. 47, 73 (1957).

    Google Scholar 

  45. C.G. Zimmermann, J. Appl. Phys. 103, 083547 (2008).

    Google Scholar 

  46. J.F. Rabek, Polymer Photodegradation (Chapman & Hall, London, 1985).

    Google Scholar 

  47. C.G. Zimmermann, Appl. Phys. Lett. 92, 241110 (2008).

    Google Scholar 

  48. M.J. O’Neill, A.J. McDanal, M.F. Piszczor, P.J. George, D.L. Edwards, H.W. Brandhorst, M.I. Eskenazi, M.M. Botke, P.M. Jaster, IEEE Aerosp. Electron. Syst. Mag. 18, 3 (2003).

    Google Scholar 

  49. J.A. Dever, B.A. Banks, L. Yan, J. Spacecr. Rockets 43, 386 (2006).

    Google Scholar 

  50. C.G. Zimmermann, J. Appl. Phys. 100, 023714 (2006).

    Google Scholar 

  51. C.G. Zimmermann, IEEE Trans. Device Mater. Reliab. 6, 486 (2006).

    Google Scholar 

  52. H. Yamaguchi, N. Takahashi, T. Kodama, R. Izichi, H. Washio, K. Nakamura, T. Takamoto, M. Imaizumi, M. Takahashi, K. Shimazaki, K. Koichi, in Proc. 33rd IEEE Photovoltaic Specialists Conference, 11–16 May 2008, pp. 1–3.

  53. H. Brandhorst, T. Isaacs-Smith, B. Wells, J.D. Lichtenhan, B.X. Fu, in Proc. 4th World Conference on Photovoltaic Energy Conversion (2006), p. 1887.

  54. G. Strobl, R. Dietrich, J. Hilgarth, W. Köstler, R. Kern, M. Nell, S. Rothenbacher, A.W. Bett, F. Dimroth, M. Meusel, R. Campesato, C. Flores, G. Timo, G. Smekens, J. Vanbegin, G. Raskin, W. Geens, G. LaRoche, G. Hey, C. Signorini, S. Taylor in Proc. 3rd World Conference on Photovoltaic Energy Conversion (2003), p. 658.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, C.G. Materials Challenges in Photovoltaic Energy Generation in Space. MRS Bulletin 35, 48–54 (2010). https://doi.org/10.1557/mrs2010.616

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.616

Navigation