Skip to main content
Log in

Phase Transitions in Thin Block Copolymer Films

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

David Turnbull’s experiments and theoretical insights paved the way for much of our modern understanding of phase transitions in materials. In recognition of his contributions, this lecture will concentrate on phase transitions in a material system not considered by Turnbull, thin diblock copolymer films. Well-ordered block copolymer films are attracting increasing interest as we attempt to extend photolithography to smaller dimensions. In the case of diblock copolymer spheres, an ordered monolayer is hexagonal, but the ordered bulk is body-centered cubic (bcc). There is no hexagonal plane in the bcc structure, so a phase transition must occur as n, the number of layers of spheres in the film, increases. How this phase transition occurs with nand how it can be manipulated is the subject of the first part of my presentation. In the second part of the talk, I show that monolayers of diblock copolymer spheres and cylinders undergo order-to-disorder transitions that differ greatly from those of the bulk. These ordered 2D monolayers are susceptible to phonon-generated disorder as well as to thermal generation of defects, such as dislocations, which, while they are line defects in 3D, are point defects in 2D. The results are compared to the theories of melting of 2D crystals (spheres) and of 2D smectic liquid crystals (cylinders), a comparison that will allow us to understand most, but not all, of the features of these order-disorder transitions that occur as the temperature is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Turnbull, Autobiography, Materials Research Society; www.mrs.org/s_mrs/bin.asp?CID=4746&DID=164500&DOC=FILE.PDF.

  2. E.W. Cochran, C.J. Garcia-Cervera, G.H. Fredrickson, Macromolecules 39, 2449 (2006).

    Google Scholar 

  3. K.H. Dai, E.J. Kramer, Polymer 35, 157 (1994).

    Google Scholar 

  4. M.W. Matsen, J. Phys. Condens. Matter 14, R21 (2002).

    Google Scholar 

  5. E.L. Thomas, D.J. Kinning, D.B. Alward, C.S. Henkee, Macromolecules 20, 2934 (1987).

    Google Scholar 

  6. G.E. Stein, PhD thesis, University of California, Santa Barbara (2006).

  7. G.E. Stein, E.W. Cochran, K. Katsov, G.H. Fredrickson, E.J. Kramer, X. Li, J. Wang, Phys. Rev. Lett. 98, 158302 (2007).

    Google Scholar 

  8. G.E. Stein, E.J. Kramer, X. Li, J. Wang, Macromolecules 40, 2453 (2007).

    Google Scholar 

  9. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, UK, 2006).

    Google Scholar 

  10. V. Misha, S. Hur, E.W. Cochran, G.E. Stein, G.H. Fredrickson, E.J. Kramer, Macromolecules 43, 1942 (2010).

    Google Scholar 

  11. R.A. Segalman, Mater. Sci. Eng. R 48, 1919 (2005).

    Google Scholar 

  12. C.J. Hawker, T.P. Russell, MRS Bull. 30, 953 (2005).

    Google Scholar 

  13. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Science 276, 1401 (1997).

    Google Scholar 

  14. R.A. Segalman, A. Hexemer, R.C. Hayward, E.J. Kramer, Macromolecules 36, 3272 (2003).

    Google Scholar 

  15. R.A. Segalman, A. Hexemer, E.J. Kramer, Macromolecules 36, 6831 (2003).

    Google Scholar 

  16. R.A. Segalman, A. Hexemer, E.J. Kramer, Phys. Rev. Lett. 91, 196101 (2003).

    Google Scholar 

  17. M.R. Hammond, S.W. Sides, G.H. Fredrickson, E.J. Kramer, J. Ruokolainen, S.F. Hahn, Macromolecules 36, 8712 (2003).

    Google Scholar 

  18. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 5, L124 (1972).

    Google Scholar 

  19. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

    Google Scholar 

  20. B.I. Halperin, D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Google Scholar 

  21. D.R. Nelson, B.I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Google Scholar 

  22. A.P. Young, Phys. Rev. B 19, 1855 (1979).

    Google Scholar 

  23. G.E. Stein, E.J. Kramer, X. Li, J. Wang, Phys. Rev. Lett., 98, 086101 (2007).

    Google Scholar 

  24. G.E. Stein, W.-B. Lee, G.H. Fredrickson, E.J. Kramer, X. Li, J. Wang, Macromolecules 40, 5791 (2007).

    Google Scholar 

  25. D.E. Angelescu, C.K. Harrison, M.L. Trawick, R.A. Register, P.M. Chaikin, Phys. Rev. Lett. 95, 025702 (2005).

    Google Scholar 

  26. E.J. Kramer, Nature 437, 824 (2005).

    Google Scholar 

  27. R.A. Segalman, H. Yokoyama, E.J. Kramer, Adv. Mater. 13, 1152 (2001).

    Google Scholar 

  28. M.R. Hammond, E. Cochran, G.H. Fredrickson, E.J. Kramer, Macromolecules 38, 6575 (2005).

    Google Scholar 

  29. M.R. Hammond, E.J. Kramer, Macromolecules 39, 1538 (2006).

    Google Scholar 

  30. J. Toner, D.R. Nelson, Phys. Rev. B 23, 316 (1981).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, E.J. Phase Transitions in Thin Block Copolymer Films. MRS Bulletin 35, 457–465 (2010). https://doi.org/10.1557/mrs2010.584

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.584

Navigation