Skip to main content
Log in

Electrochemical synthesis of inorganic polycrystalline electrodes with controlled architectures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Most modern electrochemical and photoelectrochemical devices (e.g., solar cells, photoelectrochemical cells, fuel cells, and batteries) are composed of polycrystalline semiconductor and metal electrodes. The shape and size of the individual crystals constituting a polycrystalline electrode as well as the overall interfacial architecture have a significant effect on the overall performance of the electrode. Therefore, a method that can precisely control electrode morphologies and provide an understanding of their effects on electrode performance is critical for producing highly efficient and cost-effective electrode materials. Electrochemical synthesis is a low-cost method that can produce a variety of materials as polycrystalline electrodes with exceptional control of their morphologies. This article reviews recently developed electrochemical synthesis strategies that produce inorganic materials with various morphological features, which have a direct impact on the material’s properties. This article will serve as a good foundation for those seeking a viable electrochemical route to produce electrodes having a specifically desired morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Mullin, Crystallization (Butterworth-Heinemann, Oxford, 2001).

    Google Scholar 

  2. H.E. Buckley, Crystal Growth (Wiley, New York, 1951).

    Google Scholar 

  3. G.Z. Wulff, Kristallographie 34, 449 (1901).

    Google Scholar 

  4. S. Mann, Angew. Chem. Int. Ed. 39, 3393 (2000).

    Google Scholar 

  5. S.R. Qiu, A. Wierzbucki, E.A. Salter, S. Zepeda, C.A. Orme, J.R. Hoyer, G.H. Nancollas, A.M. Cody, J.J De Yoreo, J. Am. Chem. Soc. 127, 9036 (2005).

    Google Scholar 

  6. M.J. Siegfried, K.-S. Choi, Adv. Mater. 16, 1743 (2004).

    Google Scholar 

  7. C.G. Read, E.M.P. Steinmiller, K.-S. Choi, J. Am. Chem. Soc. 131, 12040 (2009).

    Google Scholar 

  8. R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, J. Phys. Chem. C 111, 16706 (2007).

    Google Scholar 

  9. D. Pradhan, K.T. Leung, Langmuir 24, 9707 (2008).

    Google Scholar 

  10. R. Yu, T. Ren, K. Sun, Z. Feng, G. Li, C. Li, J. Phys. Chem. C 113, 10833 (2009).

    Google Scholar 

  11. K.-S. Choi, Dalton Trans. 40, 5389 (2008).

    Google Scholar 

  12. M.J. Siegfried, K.-S. Choi, J. Am. Chem. Soc. 128, 10356 (2006).

    Google Scholar 

  13. E.A. Kulp, J.A. Switzer, J. Am. Chem. Soc. 129, 15120 (2007).

    Google Scholar 

  14. H.M. Kothari, E.A. Kulp, S. Boonsalee, M.P. Nikiforov, E.W. Bohannan, P. Poizot, S. Nakanishi, J.A. Switzer, Chem. Mater. 16, 4232 (2004).

    Google Scholar 

  15. P. Meakin, in Fractals, Scaling and Growth Far from Equilibrium, B. Chirikov, P. Cvitanovic, F. Moss, H. Swinney, Eds. (Cambridge University Press, UK, 1998), pp. 326–400.

    Google Scholar 

  16. T. Kuroda, T. Irisawa, A. Ookawa, J. Cryst. Growth 42, 41 (1977).

    Google Scholar 

  17. C. Gu, T.-Y. Zhang, Langmuir 24, 12010 (2008).

    Google Scholar 

  18. V. Fleury, W.A. Watters, L. Allam, T. Devers, Nature 416, 716 (2002).

    Google Scholar 

  19. R. Qiu, H.G. Cha, H.B. Noh, Y.B. Shim, X.L. Zhang, R. Qiao, D. Zhang, Y.I. Kim, U. Pal, Y.S. Kang, J. Phys. Chem. C 113, 15891 (2009).

    Google Scholar 

  20. P.-C. Hsu, S.-K. Seol, T.-N. Lo, C.-J. Liu, C.-L. Wang, C.-S. Lin, Y. Hwu, C.H. Chen, L.-W. Chang, J.H. Je, G. Margaritondoi, J. Electrochem. Soc. 155, D400 (2008).

    Google Scholar 

  21. D. Aurback, I. Weissman, Nonaqueous Electrochemistry, D. Aurbach, Ed. (Marcel Dekker, New York, 1999).

    Google Scholar 

  22. C.M. López, K.-S. Choi, Langmuir 22, 10625 (2006).

    Google Scholar 

  23. S. Nakanishi, K. Fukami, T. Tada, Y. Nakato, J. Am. Chem. Soc. 126, 9556 (2004).

    Google Scholar 

  24. J. St-Pierre, D.L. Piron, J. Electrochem. Soc. 137, 2491 (1990).

    Google Scholar 

  25. K. Fukami, S. Nakanishi, T. Tada, H. Yamasaki, S.-I. Sakai, S. Fukushima, Y. Nakato, J. Electrochem. Soc. 152, C493 (2004).

    Google Scholar 

  26. R. Saliba, C. Mingotaud, F. Argoul, S. Ravaine, Electrochem. Commun. 4, 629 (2002).

    Google Scholar 

  27. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd English Edition (National Association of Corrosion Engineers, Houston, 1974), pp. 384–392.

    Google Scholar 

  28. M.J. Siegfried, K.-S. Choi, Angew. Chem., Int. Ed. 47, 368 (2008).

    Google Scholar 

  29. C.M. McShane, K.-S. Choi, J. Am. Chem. Soc. 131, 2561 (2009).

    Google Scholar 

  30. D. Pletcher, F.C. Walsh, Industrial Electrochemistry, 2nd Edition (Chapman and Hall, New York, 1990), p. 403.

    Google Scholar 

  31. M. Willis, R. Alkire, Electrochem. Solid-State Lett. 11, D94 (2008).

    Google Scholar 

  32. M. Willis, R. Alkire, J. Electrochem. Soc. 156, D377 (2009).

    Google Scholar 

  33. S.J. Hurst, E.K. Payne, L. Qin, C.A. Mirkin, Angew. Chem. Int. Ed. 45, 2672 (2006).

    Google Scholar 

  34. C.R. Martin, Adv. Mater. 3, 457 (1991).

    Google Scholar 

  35. J.-G. Wang, M.-L. Tian, N. Kumar, T.E. Mallouk, Nano Lett. 5, 1247 (2005).

    Google Scholar 

  36. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nat. Mater. 5, 567 (2006).

    Google Scholar 

  37. Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000).

    Google Scholar 

  38. K. Takahashi, S.J. Limmer, Y. Wang, G. Cao, J. Phys. Chem. B 108, 9795 (2004).

    Google Scholar 

  39. M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Adv. Mater. 14, 665 (2002).

    Google Scholar 

  40. D. Routkevitch, T. Bigioni, M. Moskovits, J.M. Xu, J. Phys. Chem. 100 14037 (1996).

    Google Scholar 

  41. L. Sun, P.C. Searson, C.L. Chien, Appl. Phys. Lett. 74, 2803 (1999).

    Google Scholar 

  42. V.N. Urade, T.-C. Wei, M.P. Tate, J.D. Kowalski, H.W. Hillhouse, Chem. Mater. 19, 768 (2007).

    Google Scholar 

  43. C.M. López, K.-S. Choi, Chem. Commun. 3328 (2005).

  44. C. Santato, CM. López, K.-S. Choi, Electrochem. Commun. 9, 1519 (2007).

    Google Scholar 

  45. S.-K. Min, O.-S. Joo, K.-D. Jung, R.S. Mane, S.-H. Han, Electrochem. Commun. 8, 223 (2006).

    Google Scholar 

  46. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, J. Phys. Chem. C 111, 7235 (2007).

    Google Scholar 

  47. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006).

    Google Scholar 

  48. F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 411 (1953).

    Google Scholar 

  49. R.R. Rangaraju, A. Panday, K.S. Raja, M. Misra, J. Phys. D: Appl. Phys. 42, 135303 (2009).

    Google Scholar 

  50. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Electrochem. Commun. 7, 97 (2005).

    Google Scholar 

  51. N.K. Allam, X.J. Feng, C.A. Grimes, Chem. Mater. 20, 6477 (2008).

    Google Scholar 

  52. R. Hahn, J.M. Macak, P. Schmuki, Electrochem. Commun. 9, 947 (2007).

    Google Scholar 

  53. W.J. Lee, W.H. Smyrl, Solid State Lett. 8, B7 (2005).

    Google Scholar 

  54. X. Feng, T.J. LaTempa, J.I. Basham, G.K. Mor, O.K. Varghese, C.A. Grimes Nano Lett. 10, 948 (2010).

    Google Scholar 

  55. S.K. Mohapatra, S. Banerjee, M. Misra, Nanotechnology 19, 445607 (2008).

    Google Scholar 

  56. J.A. Seabold, K. Shankar, R.H.T Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K.-S. Choi, Chem. Mater. 20, 5266 (2008).

    Google Scholar 

  57. Q. Wang, K. Zhu, N.R. Neale, A.J. Frank, Nano Lett. 9, 806 (2009).

    Google Scholar 

  58. H. Xu, W. Wang, W. Zhu, J. Phys. Chem. B. 110, 13829 (2006).

    Google Scholar 

  59. K.L. Sowers, A. Fillinger J. Electrochem. Soc. 156, F80 (2009).

    Google Scholar 

  60. A.I. Hochbaum, P. Yang, Chem. Rev. 527, 110 (2010).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, KS., Jang, H.S., McShane, C.M. et al. Electrochemical synthesis of inorganic polycrystalline electrodes with controlled architectures. MRS Bulletin 35, 753–760 (2010). https://doi.org/10.1557/mrs2010.504

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.504

Navigation