Skip to main content

Self-Organized Nano- and Micro-structure of Electrochemical Materials by Design of Fabrication Approaches

  • Living reference work entry
  • First Online:
Handbook of Nanoelectrochemistry
  • 382 Accesses

Abstract

Introduction of nanostructure into electrochemistry has been widely confirmed to succeed in the performance enhancement. The morphology control of electrochemical material has become a key to the combination of electrochemistry and nanoscience. Normally, it is not easy to realize the regular structures in nanoscale by self-organization for all materials. This must rely on the well-understood properties of the desired material. The crucial control parameter of morphology should be recognized first. In this case, the design of fabrication approach can fix a direction. For the electrochemical material, application normally requires the immobilization on electrode surface. Therefore, in situ formation methods are more appreciated. Here in this chapter, two different kinds of electrochemical materials – Prussian Blue, an inorganic complex compound, and Ni(en)3Ag2I4, a hybrid material – served as examples to describe the nano/microstructure control of crystal growth by the targeted design of novel preparation approaches. Focusing on the different issues of structure control, different synthesis techniques have been developed to reach the goal. According to characterizations, these self-organized nanostructures can obviously increase the electrochemical performance of original materials which exhibits the meaningful and useful functions for the nanostructure self-organization that relied on this targeted design of fabrication approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Meier J, Schiotz J, Liu P et al (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390(4-6):440–444

    Article  CAS  Google Scholar 

  2. Bockris JO’M (2000) Modern electrochemistry 2B: electrodics in chemistry, engineering, biology and environmental science. Kluwer/Plenum, New York

    Google Scholar 

  3. O’Regan B, Gratzel M, Fitzmaurice D (1991) Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Chem Phys Lett 183(1–2):89–93

    Article  Google Scholar 

  4. Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36(2):225–241

    Article  CAS  Google Scholar 

  5. Schindler W, Kirschner J (1997) Ultrathin magnetic films: electrochemistry versus molecular-beam epitaxy. Phys Rev B 55(4):1989–1996

    Article  Google Scholar 

  6. Ohzuku T, Ueda A, Nagayama M (1993) Electrochemistry and structural chemistry of LiNiO2 (R3̅m) for 4 volt secondary lithium cells. J Electrochem Soc 140(7):1862–1870

    Article  CAS  Google Scholar 

  7. Stupp SI (2005) Introduction: functional nanostructures. Chem Rev 105(4):1023–1024

    Article  CAS  Google Scholar 

  8. Guo Y, Hu Y, Sigle W et al (2007) Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv Mater 19(16):2087–2091

    Article  CAS  Google Scholar 

  9. Yu A, Liang Z, Cho J et al (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3(9):1203–1207

    Article  CAS  Google Scholar 

  10. Bisquert J (2008) Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys 10:49–72

    Article  CAS  Google Scholar 

  11. Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York

    Google Scholar 

  12. Fulop GF, Taylor RM (1985) Electrodeposition of semiconductors. Ann Rev Mater Sci 15:197–210

    Article  CAS  Google Scholar 

  13. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization-a review. Sci Technol Adv Mat 9(4):43001–43011

    Google Scholar 

  14. Li Y, Shi G (2005) Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J Phys Chem B 109(50):23787–23793

    Article  CAS  Google Scholar 

  15. Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17(14):3668–3672

    Article  CAS  Google Scholar 

  16. Chu Z, Liu Y, Jin W et al (2009) Facile fabrication of a Prussian blue film by direct aerosol deposition on a Pt electrode. Chem Commun 24:3566–3567

    Article  Google Scholar 

  17. Jiang YS, Yao HG, Ji SH et al (2008) New framework iodoargentates: M(en)3Ag2I4 (M = Zn, Ni) with tridymite topology. Inorg Chem 47(10):3922–3924

    Article  CAS  Google Scholar 

  18. Razmi H, Mohammad-Rezaei R, Heidari H (2009) Self-assembled Prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media. Electroanalysis 21(21):2355–2362

    Article  CAS  Google Scholar 

  19. Ricci F, Palleschi G, Yigzaw Y et al (2003) Investigation of the effect of different glassy carbon materials on the performance of Prussian blue based sensors for hydrogen peroxide. Electroanalysis 15(3):175–182

    Article  CAS  Google Scholar 

  20. Haghighi B, Nikzad R (2009) Prussian blue modified carbon ionic liquid electrode: electrochemical characterization and its application for hydrogen peroxide and glucose measurements. Electroanalysis 21(16):1862–1868

    Article  CAS  Google Scholar 

  21. Ludi A (1981) Prussian blue, an inorganic evergreen. J Chem Educ 58(12):1013

    Article  CAS  Google Scholar 

  22. Robin MB (1962) The color and electronic configurations of Prussian blue. Inorg Chem 1(2):337–342

    Article  CAS  Google Scholar 

  23. Itaya K, Akahoshi H, Toshima S (1982) Electrochemistry of Prussian blue modified electrodes: an electrochemical preparation method. J Electrochem Soc 129(7):1498–1500

    Article  CAS  Google Scholar 

  24. Muller G, Metois J, Rudolph P (eds) (2004) Crystal growth-from fundamentals to technology. Elsevier, Amsterdam

    Google Scholar 

  25. Ulrich J, Strege C (2002) Some aspects of the importance of metastable zone width and nucleation in industrial crystallizers. J Cryst Growth 237–239(3):2130–2135

    Article  Google Scholar 

  26. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  27. Laidler KJ (1979) Theories of chemical reaction rates. R. E. Krieger, Michigan

    Google Scholar 

  28. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19(6):162–168

    Article  CAS  Google Scholar 

  29. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407

    Article  CAS  Google Scholar 

  30. Gultepe I (ed) (2007) Fog and boundary layer clouds: fog visibility and forecasting. Springer, Berlin

    Google Scholar 

  31. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Hoboken

    Google Scholar 

  32. Liu Y, Chu Z, Jin W (2009) A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode. Electrochem Commun 11(2):484–487

    Article  CAS  Google Scholar 

  33. Zhang J, Huang M, Ma H et al (2007) High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol. Electrochem Commun 9(6):1298–1304

    Article  CAS  Google Scholar 

  34. Lao C, Liu J, Gao P et al (2006) ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6(2):263–266

    Article  CAS  Google Scholar 

  35. Chu Z, Zhang Y, Dong X et al (2010) Template-free growth of regular nano-structured Prussian blue on a platinum surface and its application in biosensors with high sensitivity. J Mater Chem 20:7815–7820

    Article  CAS  Google Scholar 

  36. Karyakin A, Puganova E, Bolshakov I et al (2007) Electrochemical sensor with record performance characteristics. Angew Chem Int Edit 119(40):7822–7824

    Article  Google Scholar 

  37. Karyakin A (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13(10):813–819

    Google Scholar 

  38. Chu Z, Shi L, Liu Y et al (2013) In-situ growth of micro-cubic Prussian blue-TiO2 composite film as a highly sensitive H2O2 sensor by aerosol co-deposition approach. Biosens Bioelectron 47(15):329–334

    Article  CAS  Google Scholar 

  39. Zeis R, Lei T, Sieradzki K et al (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253(1):132–138

    Article  CAS  Google Scholar 

  40. Millward RC, Madden CE, Sutherland I et al (2001) Directed assembly of multilayers-the case of Prussian blue. Chem Commun 19:1994–1996

    Article  Google Scholar 

  41. Chu Z, Shi L, Zhang Y et al (2011) Hierarchical self-assembly of double structured Prussian blue film for highly sensitive biosensors. J Mater Chem 21:11968–11972

    Article  CAS  Google Scholar 

  42. Johansson A, Widenkvist E, Lu J et al (2005) Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template. Nano Lett 5(8):1603–1606

    Article  CAS  Google Scholar 

  43. Puganova E, Karyakin A (2005) New materials based on nanostructured Prussian blue for development of hydrogen peroxide sensors. Sens Actuators B 109(1):167–170

    Article  CAS  Google Scholar 

  44. Pham T, Kim H, Yoon K (2011) Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science 334:1533–1538

    Article  CAS  Google Scholar 

  45. Shibata T, Fukuda K, Ebina Y, Kogure T, Sasaki T (2008) One-nanometer-thick seed layer of unilamellar nanosheets promotes oriented growth of oxide crystal films. Adv Mater 20(2):231–235

    Article  CAS  Google Scholar 

  46. Hermes S, Schroder F, Chelmowski R, WÖll C, Fischer RA (2005) Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J Am Chem Soc 127(40):13744–13745

    Article  CAS  Google Scholar 

  47. Liu B, Shekhah O, Arslan HK, Liu JX, WÖll C, Fischer RA (2012) Enantiopure metal–organic framework thin films: oriented SURMOF growth and enantioselective adsorption. Angew Chem Int Ed 51(3):807–810

    Article  CAS  Google Scholar 

  48. Yusenko K, Meilikhov M, Zacher D, Wieland F, Sternemann C, Stammer X, Ladnorg T, WÖll C, Fischer RA (2010) Step-by-step growth of highly oriented and continuous seeding layers of [Cu2(ndc)2(dabco)] on bare oxide and nitride substrates. Cryst Eng Comm 12:2086–2090

    Article  CAS  Google Scholar 

  49. Biemmi E, Scherb C, Bein T (2007) Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3∙xH2O tunable with functionalized self-assembled monolayers. J Am Chem Soc 129(26):8054–8055

    Article  CAS  Google Scholar 

  50. Schoedel A, Scherb C, Bein T (2010) Oriented nanoscale films of metal–organic frameworks by room–temperature gel-layer synthesis. Angew Chem Int Ed 49(40):7225–7228

    Article  CAS  Google Scholar 

  51. Scherb C, Schoedel A, Bein T (2008) Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew Chem Int Ed 47(31):5777–5779

    Article  CAS  Google Scholar 

  52. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1169

    Article  CAS  Google Scholar 

  53. Flink S, van Veggel FCJM, Reinhoudt DN (2000) Sensor functionalities in self-assembled monolayers. Adv Mater 12(18):1315–1328

    Article  CAS  Google Scholar 

  54. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Conductance of a molecular junction. Science 278:252–254

    Article  CAS  Google Scholar 

  55. Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2:888–2895

    Google Scholar 

  56. Peng HI, Strohsahl CM, Leach KE, Krauss TD, Miller BL (2009) Label-free DNA detection on nanostructured Ag surfaces. ACS Nano 3(8):2265–2273

    Article  CAS  Google Scholar 

  57. Shi L, Chu Z, Dong X et al (2013) A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. Nanoscale 5:10219–10225

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Innovative Research Team Program by the Ministry of Education of China (No. IRT13070) and the Doctoral Fund of Ministry of Education of China (No. 20113221110001) and is a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Chu, Z., Shi, L., Jin, W. (2015). Self-Organized Nano- and Micro-structure of Electrochemical Materials by Design of Fabrication Approaches. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15207-3_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-15207-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics