Skip to main content
Log in

Polytype Replication in Heteroepitaxial Growth of Nonpolar AlN on SiC

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Zinc-blende and wurtzite are the most common structures for binary compound semiconductors. Aluminum nitrides (AIN), one of the most promising materials for deep ultraviolet light-emitting diodes, have a wurtzite structure as an equilibrium phase due to its strong ionicity. Silicon carbide (SiC) is widely used as a substrate for heteroepitaxial growth of AlN, since SiC has a hexagonal structure whose lattice constant is close to that of AIN. Different from other compound semiconductors, SiC can have many different crystalline structures, called polytypism. Among various polytypes of SiC, large-size high-quality wafers are available for 4H and 6H structures. When AlN is grown on a 4H- or 6H-SiC basal plane (0001), normal, wurtzite-structured AIN is obtained. On the other hand, when AlN is grown on a nonbasal SiC plane, such as nonpolar (1100) or (1120), what is expected? If ideal growth is realized, AIN will follow the crystalline structure of SiC (i.e., the polytype of the SiC substrate will be replicated to the AIN epitaxial layer). Nonpolar nitride growth has attracted much attention to eliminate undesirable internal electric fields due to the polarization in nitride heterostructures. In addition, nonpolar nitride growth on SiC also allows an opportunity to obtain nitrides with new crystalline structures. In this article, the polytype replication growth of AIN on nonpolar SiC substrates is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Khan, Phys. Status Solidi A 203, 1764 (2006).

    Google Scholar 

  2. Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441, 325 (2006).

    Google Scholar 

  3. S.-H. Park, J. Appl. Phys. 91, 9904 (2002).

    Google Scholar 

  4. H.M. Ng, A. Bell, F.A. Ponce, S.N.G. Chu, Appl. Phys. Lett. 83, 653 (2003).

    Google Scholar 

  5. A.R. Verma, K. Krishna, Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).

    Google Scholar 

  6. D. Pandey, P.J. Krishna, J. Cryst. Growth 31, 66 (1975).

    Google Scholar 

  7. Y.M. Tairov, V.F. Tsvetkov, J. Cryst. Growth 43, 209 (1978).

    Google Scholar 

  8. H.M. Hobgood, M.F. Brady, M.R. Calus, J.R. Jenny, R.T. Leonard, D.P. Malta, S.G. Muller, A.R. Powell, V.F. Tsvetkov, R.C. Glass, C.H. Carter, Mater. Sci. Forum 457–460, 3 (2003).

    Google Scholar 

  9. N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, M.R. Krames, Appl. Phys. Lett. 86, 111101 (2005).

    Google Scholar 

  10. N. Onojima, J. Suda, T. Kimoto, H. Matsunami, Appl. Phys. Lett. 83, 5208 (2003).

    Google Scholar 

  11. S. Stemmer, P. Pirouz, Y. Ikuhara, R.F. Davis, Phys. Rev. Lett. 77, 1797 (1996).

    Google Scholar 

  12. N. Onojima, J. Suda, H. Matsunami, Jpn. J. Appl. Phys. 41, L1348 (2002).

    Google Scholar 

  13. N. Onojima, J. Suda, H. Matsunami, Mater. Res. Soc. Symp. Proc. 743, L3.21 (2003).

    Google Scholar 

  14. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S.P. DenBaars, Appl. Phys. Lett. 81, 469 (2002).

    Google Scholar 

  15. M. Horita, J. Suda, T. Kimoto, Phys. Status Solidi C 3, 1503 (2006).

    Google Scholar 

  16. M. Horita, J. Suda, T. Kimoto, Appl. Phys. Lett. 89, 112117 (2006).

    Google Scholar 

  17. M. Horita, T. Kimoto, J. Suda, Jpn. J. Appl. Phys. 47 8388 (2008).

    Google Scholar 

  18. R. Armitage, J. Suda, T. Kimoto, Appl. Phys. Lett. 88, 011908 (2006).

    Google Scholar 

  19. M. Horita, T. Kimoto, J. Suda, Appl. Phys. Lett. 93, 082106 (2008).

    Google Scholar 

  20. J. Suda, M. Horita, R. Armitage, T. Kimoto, J. Crys. Growth 301, 410 (2007).

    Google Scholar 

  21. D.M. Schaadt, O. Brandt, A. Trampert, H.-P. Schönherr, K.H. Ploog, J. Crys. Growth 300, 127 (2007).

    Google Scholar 

  22. R. Armitage, M. Horita, J. Suda, T. Kimoto, Mater. Res. Soc. Symp. Proc. 892, FF28-03 (2006).

  23. R. Armitage, M. Horita, J. Suda, T. Kimoto, J. Appl. Phys. 101, 033534 (2007).

    Google Scholar 

  24. C.-M. Zetterling, K. Wongchotigul, M.G. Spencer, C.I. Harris, S.S. Wong, M. Östling, Mater. Res. Soc. Symp. Proc. 423, 667 (1996).

    Google Scholar 

  25. N. Onojima, J. Kaido, J. Suda, T. Kimoto, Phys. Status Solidi C 2, 2643 (2005).

    Google Scholar 

  26. J. Pankove, S.-S. Chang, H.C. Lee, R. Molnar, T.D. Moustakas, B. Van Zeghbroeck, in Proceedings of International Electron Devices Meeting, San Francisco, U.S.A. (1994), p. 389.

  27. J. Suda, Y. Nakano, S. Shimada, K. Amari, T. Kimoto, Mater. Sci. Forum 527–529, 1545 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suda, J., Horita, M. Polytype Replication in Heteroepitaxial Growth of Nonpolar AlN on SiC. MRS Bulletin 34, 348–352 (2009). https://doi.org/10.1557/mrs2009.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.98

Navigation