Skip to main content
Log in

GaN-Based Light-Emitting Diodes on Selectively Grown Semipolar Crystal Facets

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In this article, we briefly review a particular approach to fabricate light-emitting diode (LED) structures on the semipolar side facets of triangular GaN stripes grown by selective area epitaxy. This approach enables a significant reduction of the internal piezoelectric fields in the LED’s active area, while still maintaining the well-established c-direction as the main epitaxial growth direction for GaN-based devices on large area substrates. For the latter, these internal fields are responsible for the lower efficiency of GaN-based LEDs in the longer (green) wavelength range. The reduced internal fields of such semipolar LEDs can be directly determined by photoluminescence (PL) investigations on pre-biased LED structures and further confirmed by time-resolved PL studies. The epitaxial growth behavior is strongly facet-dependent, leading to different surface flatnesses on different semipolar facets formed by this procedure and different – indium incorporation efficiencies. An increased indium uptake on semipolar {1101} facets as compared to conventional c-plane layers can help to shift the LED emission to longer wavelengths near 500 nm, despite the significantly reduced field-dependent Stark shift, which helps to reach the green wavelength range in polar LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 39, 413 (2000).

    Google Scholar 

  2. T. Takeuchi, S. Lester, D. Basile, G. Girolami, R. Twist, F. Mertz, M. Wong, R. Schneider, H. Amano, I. Akasaki, IPAP Conf. Series 1, 137 (2000); Proc. Int. Workshop on Nitride Semiconductors.

    Google Scholar 

  3. K. Nishizuka, M. Funato, Y. Kawakami, S. Fujita, Y. Narukawa, T. Mukai, Appl. Phys. Lett. 85, 3122 (2004).

    Google Scholar 

  4. S. Khatsevich, D.H. Rich, X. Zhang, W. Zhou, P.D. Dapkus, J. Appl. Phys. 95, 1832 (2004).

    Google Scholar 

  5. B. Neubert, F. Habel, P. Brückner, F. Scholz, T. Riemann, J. Christen, Mater. Res. Symp. Proc. 831, E11.32.1 (2005).

    Google Scholar 

  6. X. Zhang, P.D. Dapkus, D.H. Rich, I. Kim, J.T. Kobayashi, N.P. Kobayashi, J. Electron. Mat. 29, 10 (2000).

    Google Scholar 

  7. J. Hertkorn, P. Brückner, S.B. Thapa, T. Wunderer, F. Scholz, M. Feneberg, K. Thonke, R. Sauer, M. Beer, J. Zweck, J. Cryst. Growth 308, 30 (2007).

    Google Scholar 

  8. T. Wunderer, P. Brückner, B. Neubert, F. Scholz, M. Feneberg, F. Lipski, M. Schirra, K. Thonke, Appl. Phys. Lett. 89, 041121 (2006).

    Google Scholar 

  9. M. Funato, T. Kondou, K. Hayashi, S. Nishiura, M. Ueda, Y. Kawakami, Y. Narukawa, T. Mukai, Appl. Phys. Express 1, 011106 (2008).

    Google Scholar 

  10. J. Off, A. Kniest, C. Vorbeck, F. Scholz, O. Ambacher, J. Crystal Growth 195, 286 (1998).

    Google Scholar 

  11. M. Feneberg, K. Thonke, J. Phys.: Condens. Matter 19, 403201 (2007).

    Google Scholar 

  12. M. Feneberg, F. Lipski, M. Schirra, R. Sauer, K. Thonke, T. Wunderer, P. Brückner, F. Scholz, Phys. Status Solidi C 5, 2089 (2008).

    Google Scholar 

  13. E.J. Thrush, J.P. Stagg, M.A. Gibbon, R.E. Mallard, B. Hamilton, J.M. Jowett, E.M. Allen, Mater. Sci. Eng. B 21, 130 (1993).

    Google Scholar 

  14. B. Neubert, “GaInN/GaN LEDs auf semipolaren Seitenfacetten mittels selektiver Epitaxie hergestellter GaN-Streifen”, PhD thesis, Universität Ulm, 2008.

  15. B. Neubert, P. Brückner, F. Habel, F. Scholz, T. Riemann, J. Christen, M. Beer, J. Zweck, Appl. Phys. Lett. 87, 182111 (2005).

    Google Scholar 

  16. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, Phys. Status Solidi A 176, 535 (1999).

    Google Scholar 

  17. K. Nishizuka, M. Funato, Y. Kawakami, Y. Narukawa, T. Mukai, Appl. Phys. Lett. 87, 231901 (2005).

    Google Scholar 

  18. B. Neubert, F. Habel, P. Brückner, F. Scholz, M. Schirra, M. Feneberg, K. Thonke, T. Riemann, J. Christen, M. Beer, J. Zweck, G. Moutchnik, M. Jetter, Phys. Status Solidi C 3, 1587 (2006).

    Google Scholar 

  19. B. Neubert, T. Wunderer, P. Brückner, F. Scholz, M. Feneberg, F. Lipski, M. Schirra, K. Thonke, J. Cryst. Growth 298, 706 (2007).

    Google Scholar 

  20. T. Wunderer, F. Lipski, J. Hertkorn, P. Brückner, F. Scholz, M. Feneberg, M. Schirra, K. Thonke, A. Chuvilin, U. Kaiser, Phys. Status Solidi C 5, 2059 (2008).

    Google Scholar 

  21. M. Aoki, H. Yamane, M. Shimada, S. Sarayama, H. Iwata, F.J. Disalvo, Jpn. J. Appl. Phys. 42, 5445 (2003).

    Google Scholar 

  22. T. Wunderer, J. Hertkorn, F. Lipski, P. Brückner, M. Feneberg, M. Schirra, K. Thonke, I. Knoke, E. Meissner, A. Chuvilin, U. Kaiser, F. Scholz, Proc. of SPIE 6894, 68940V (2008); Gallium Nitride Materials, Devices III, H. Morkoç, C.W. Litton, J.-I. Chyi, Y. Nanishi, E. Yoon, Eds.

    Google Scholar 

  23. P.L. Bonanno, S.M. O’Malley, A.A. Sirenko, A. Kazimirov, Z. Cai, T. Wunderer, P. Brückner, F. Scholz, Appl. Phys. Lett. 92, 123106 (2008).

    Google Scholar 

  24. J.E. Northrup, L.T. Romano, J. Neugebauer, Appl. Phys.Lett. 74, 2319 (1999).

    Google Scholar 

  25. F. Scholz, D. Ottenwälder, M. Eckel, M. Wild, G. Frankowsky, T. Wacker, A. Hangleiter, J. Cryst. Growth 145, 242 (1994).

    Google Scholar 

  26. T. Takeuchi, Ch. Wetzel, Sh. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, N. Yamada, Appl. Phys. Lett. 73, 1691 (1998).

    Google Scholar 

  27. Yue Jun Sun, O. Brandt, S. Cronenberg, S. Dhar, H.T. Grahn, K.H. Ploog, P. Waltereit, J.S. Speck, Phys. Rev. B 73, 041306(R) (2003).

    Google Scholar 

  28. T. Wunderer, P. Brückner, J. Hertkorn, F. Scholz, G.J. Beirne, M. Jetter, P. Michler, M. Feneberg, K. Thonke, Appl. Phys. Lett. 90, 171123 (2007).

    Google Scholar 

  29. F. Scholz, Prog. Cryst. Growth Charact. 35, 243 (1997).

    Google Scholar 

  30. H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, T. Saitoh, Appl. Phys. Lett. 83, 4791 (2003).

    Google Scholar 

  31. M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Brückner, F. Scholz, Appl. Phys. Lett. 86, 242112 (2006).

    Google Scholar 

  32. D. Fuhrmann, U. Rossow, C. Netzel, H. Bremers, G. Ade, P. Hinze, A. Hangleiter, Phys. Status Solidi C 3, 1966 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, F., Wunderer, T., Neubert, B. et al. GaN-Based Light-Emitting Diodes on Selectively Grown Semipolar Crystal Facets. MRS Bulletin 34, 328–333 (2009). https://doi.org/10.1557/mrs2009.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.95

Navigation