Skip to main content
Log in

InGaAs Metal Oxide Semiconductor Devices with Ga2O3(Gd2O3) High-κ Dielectrics for Science and Technology beyond Si CMOS

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

An overview is given on scientific and device advances for InGaAs metal oxide semiconductor heterostructures and inversion channel metal oxide semiconductor field-effect transistors (MOSFETs), with emphasis on results using ultrahigh vacuum-deposited Ga2O3(Gd2O3) [GGO] as high-κ dielectrics. Regardless of the approaches used to deposit high-κ dielectrics on InGaAs, critical material and electrical parameters of fabricating inversion channel InGaAs MOSFETs must be ready for complementary MOS technology beyond the 16-nm node, and some of these parameters have been achieved. These parameters include low interfacial density of states; low electrical leakage currents; high-temperature (800–900°C) thermal stability for high-κ dielectrics/InGaAs heterostructures, where the amorphous oxide structure and atomically smooth and sharp interfaces are retained; and oxide scalability with a capacitance equivalent thickness of ≤1 nm. Interfacial chemical properties and band parameters, which are important for device design in the high κs/InGaAs, have been thoroughly studied. Representative enhancement-mode InGaAs MOSFETs are compared and correlated with the interfacial structures. Deposition methods and electrical characteristics of high-κ dielectrics on InGaA are discussed. The inversion channel InGaAs MOSFETs of 0.4–1.0 μm gate length have exhibited excellent device performance in terms of drain current and transconductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, Nat. Mater. 6, 810 (2007).

    Google Scholar 

  2. C.W. Wilmsen, Physics and Chemistry of III–V Compound Semiconductor Interface (Plenum Press, New York, 1985).

    Google Scholar 

  3. M.W. Hong, J.R. Kwo, P.C. Tsai , Y.C. Chang, M.L. Huang, C.P. Chen, T.D. Lin, Jpn. J. Appl. Phys., Part 1 46, 3167 (2007).

  4. M. Hong, W.C. Lee, M.L. Huang, Y.C. Chang, T.D. Lin, Y.J. Lee, J. Kwo, C.H. Hsu, H.Y. Lee, Thin Solid Films, 515, 5581 (2007).

    Google Scholar 

  5. M. Hong, J.P. Mannaerts, J.E. Bowers, J. Kwo, M. Passlack, W.-Y. Hwang, L.W. Tu, J. Cryst. Growth, 175, 422 (1997).

    Google Scholar 

  6. J. Kwo, D.W. Murphy, M. Hong, R.L. Opila, J.P. Mannaerts, R.L. Masaitis, A.M. Sergent, Appl. Phys. Lett. 75, 1116 (1999).

    Google Scholar 

  7. M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, A.M. Sergent, Science, 283, 1897 (1999).

    Google Scholar 

  8. J. Kwo, M. Hong, B. Busch, D.A. Muller, Y.J. Chabal, A.R. Kortan, J.P. Mannaerts, B. Yang, P. Ye, H. Gossmann, A.M. Sergent, K.K. Ng, J. Bude, W.H. Schulte, E. Garfunkel, T. Gustafsson, J. Cryst. Growth, 251, 645 (2003).

    Google Scholar 

  9. F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, Y.K. Chen, A.Y. Cho, IEEE International Electron Devices Meeting, IEDM Tech. Dig. 943 (1996).

  10. F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, A.Y. Cho, Solid-State Electron. 41 (11), 1751 (1997).

    Google Scholar 

  11. Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Krajewski, J.S. Weiner, Y.K. Chen, A.Y. Cho, Mater. Res. Soc. Symp. Proc. 573, 219 (1999).

    Google Scholar 

  12. P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, J. Bude, Appl. Phys. Lett. 83, 180 (2003).

    Google Scholar 

  13. M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee, P. Chang, J. Kwo, T.B. Wu, M. Hong, Appl. Phys. Lett. 87, 252104 (2005).

    Google Scholar 

  14. M.L. Huang, Y.C. Chang, C.H. Chang, T.D. Lin, J. Kwo, T.B. Wu, M. Hong, Appl. Phys. Lett. 89, 012903 (2006).

    Google Scholar 

  15. Y.C. Chang, M.L. Huang, K.Y. Lee, Y.J. Lee, T.D. Lin, M. Hong, J. Kwo, T.S. Lay, C.C. Liao, K.Y. Cheng, Appl. Phys. Lett. 92, 072901 (2008).

    Google Scholar 

  16. K.Y. Lee, Y.J. Lee, P. Chang, M.L. Huang, Y.C. Chang, M. Hong, J. Kwo, Appl. Phys. Lett. 92, 252908 (2008).

    Google Scholar 

  17. Y. Xuan, Y.Q. Wu, T. Shen, T. Yang, P.D. Ye, IEEE International Electron Devices Meeting, IEDM Tech. Dig. 637 (2007).

  18. D.Y. Noh, Y. Hwu, H.K. Kim, M. Hong, Phys. Rev. B, 51, 4441 (1995).

    Google Scholar 

  19. M. Hong, M.A. Marcus, J. Kwo, J.P. Mannaerts, A.M. Sergent, L.J. Chou, K.C. Hsieh, K.Y. Cheng, J. Vac. Sci. Technol. B, 16, 1395 (1998).

    Google Scholar 

  20. E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).

    Google Scholar 

  21. J. Kwo, D.W. Murphy, M. Hong, J.P. Mannaerts, R.L. Opila, R.L. Masaitis, A.M. Sergent, J. Vac. Sci. Technol. B, 17, 1294 (1999).

    Google Scholar 

  22. M. Hong, Z.H. Lu, J. Kwo, A.R. Kortan, J.P. Mannaerts, J.J. Krajewski, K.C. Hsieh, L.J. Chou, K.Y. Cheng, Appl. Phys. Lett. 76, 312 (2000).

    Google Scholar 

  23. K.H. Shiu, C.H. Chiang, Y.J. Lee, W.C. Lee, P. Chang, L.T. Tung, M. Hong, J. Kwo, W. Tsai, J. Vac. Sci. Technol. B, 26, 1132 (2008).

    Google Scholar 

  24. K.H. Shiu, T.H. Chiang, P. Chang, L.T. Tung, M. Hong, J. Kwo, W. Tsai, Appl. Phys. Lett. 92, 172904 (2008).

    Google Scholar 

  25. Y.L. Huang, P. Chang, Z.K. Yang, Y.J. Lee, H.Y. Lee, H.J. Liu, J. Kwo, J.P. Mannaerts, M. Hong, Appl. Phys. Lett. 86, 191905 (2005).

    Google Scholar 

  26. C.P. Chen, Y.J. Lee, Y.C. Chang, Z.K. Yang, M. Hong, J. Kwo, H.Y. Lee, T.S. Lay, J. Appl. Phys. 100, 104502 (2006).

    Google Scholar 

  27. J. Kwo, M. Hong, J.P. Mannaerts, Y.D. Wu, Q.Y. Lee, B. Yang, T. Gustafsson, Mater. Res. Soc. Symp. Proc. 811, E1.12 (2004).

    Google Scholar 

  28. S. Koveshnikov, W. Tsai, I. Ok, J.C. Lee, V. Torkanov, M. Yakimov, S. Oktyabrsky, Appl. Phys. Lett. 88, 022106 (2006).

    Google Scholar 

  29. N. Goel, P. Majhi, C.O. Chui, W. Tsai, D. Choi, J.S. Harris, Appl. Phys. Lett. 89, 163517 (2006).

    Google Scholar 

  30. Y. Xuan, H.C. Lin, P.D. Ye, IEEE Trans. Electron Devices, 54, 1811 (2007).

    Google Scholar 

  31. H. Jin, S.K. Oh, H.J. Kang, S. Tougaard, J. Appl. Phys. 100, 083713 (2006).

    Google Scholar 

  32. M.L. Huang, Y.C. Chang, Y.H. Chang, T.D. Lin, J. Kwo, M. Hong, Appl. Phys. Lett. 94, 052106 (2009).

    Google Scholar 

  33. T.S. Lay, M. Hong, J. Kwo, J.P. Mannaerts, W.H. Hung, D.J. Huang, Solid-State Electron. 45, 1679 (2001).

    Google Scholar 

  34. F. Ren, J.M. Kuo, M. Hong, W.S. Hobson, J.R. Lothian, J. Lin, W.S. Tseng, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, A.Y. Cho, IEEE Electron Device Lett. 19 (8), 309 (1998).

    Google Scholar 

  35. Y. Xuan, Y.Q. Wu, P.D. Ye, IEEE Electron Device Lett. 29, 294 (2008).

    Google Scholar 

  36. T.D. Lin, H.C. Chiu, P. Chang, L.T. Tung, C.P. Chen, M. Hong, J. Kwo, W. Tsai, Y.C. Wang, Appl. Phys. Lett. 93, 033516 (2008).

    Google Scholar 

  37. H.C. Chiu, T.D. Lin, P. Chang, W.C. Lee, C.H. Chiang, J. Kwo, Y.S. Lin, Shawn S.H. Hsu, W. Tsai, M. Hong, International Symposium on VLSI Technology, Systems and Applications, 2009, p. 141.

  38. R.J.W. Hill, D.A.J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, L.G. Thayne, IEEE Electron Device Lett. 28, 1080 (2007).

    Google Scholar 

  39. Y. Sun, E.W. Kiewra, S.J. Koester, N. Ruiz, A. Callegari, K.E. Fogel, D.K. Sadana, J. Fompeyrine, D.J. Webb, J.P. Locquet, M. Sousa, R. Germann, K.T. Shiu, S.R. Forrest, IEEE Electron Device Lett. 28, 473 (2007).

    Google Scholar 

  40. H.C. Chiu, L.T. Tung, Y.H. Chang, Y.J. Lee, C.C. Chang, J. Kwo, M. Hong, Appl. Phys. Lett. 93, 202903 (2008).

    Google Scholar 

  41. J.P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D.K. Sadana, G. Shahidi, D.J. Webb, J. Fompeyrine, R. Germann, C. Rossel, C. Marchiori, Appl. Phys. Lett. 92, 153508 (2008).

    Google Scholar 

  42. H.C. Chin, M. Zhu, G.S. Samudra, Y.C. Yeo, J. Electrochem. Soc. 155, H464 (2008).

    Google Scholar 

  43. C.P. Chen, T.D. Lin, Y.J. Lee, Y.C. Chang, M. Hong, J. Kwo, Solid-State Electron. 52, 1615 (2008).

    Google Scholar 

  44. Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, H.S. Tsai, J. Kwo, J.J. Krajewski, Y.K. Chen, A.Y. Cho, Electron. Lett. 35, 667 (1999).

    Google Scholar 

  45. M. Hong, J.N. Baillargeon, J. Kwo, J.P. Mannaerts, A.Y. Cho, Proc. 2000 IEEE Int. Symp. Compd. Semicond. 345 (2000).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, M., Kwo, J., Lin, T.D. et al. InGaAs Metal Oxide Semiconductor Devices with Ga2O3(Gd2O3) High-κ Dielectrics for Science and Technology beyond Si CMOS. MRS Bulletin 34, 514–521 (2009). https://doi.org/10.1557/mrs2009.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.139

Navigation