Skip to main content
Log in

Electric and Magnetic Phenomena Studied by In Situ Transmission Electron Microscopy

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

There is a wide array of technologically significant materials whose response to electric and magnetic fields can make or break their utility for specific applications. Often, these electrical and magnetic properties are determined by nanoscale features that can be most effectively understood through electron microscopy studies. Here, we present an overview of the capabilities for transmission electron microscopy for uncovering information about electric and magnetic properties of materials in the context of operational devices. When devices are operated during microscope observations, a wealth of information is available about dynamics, including metastable and transitional states. Additionally, because the imaging beam is electrically charged, it can directly capture information about the electric and magnetic fields in and around devices of interest. This is perhaps most relevant to the growing areas of nanomaterials and nanodevice research. Several specific examples are presented of materials systems that have been explored with these techniques. We also provide a view of the future directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J. Ford, The Leeuwenhoek Legacy (Biopress Ltd., Bristol, 1991).

    Google Scholar 

  2. D. Cooper, A.C. Twitchett-Harrison, P.A. Midgley, R.E. Dunin-Borkowski, J. Appl. Phys. 101, 094508 (2007).

    Google Scholar 

  3. J.W. Lau, M.A. Schofield, Y. Zhu, Ultramicroscopy 107, 396 (2007).

    Google Scholar 

  4. Y. Murakami, D. Shindo, Mater. Trans. 46, 743 (2005).

    Google Scholar 

  5. M.A. Schofield, M. Beleggia, J. W. Lau, and Y. Zhu, JEOL News 2 (2007).

  6. M. Lehmann, H. Lichte, Microsc. Microanal. 8, 447 (2002).

    Google Scholar 

  7. K.A. Nugent, T.E. Gureyev, D.F. Cookson, D. Paganin, Z. Barnea, Phys. Rev. Lett. 77, 2961 (1996).

    Google Scholar 

  8. M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu, Ultramicroscopy 102, 37 (2004).

    Google Scholar 

  9. J.W. Lau, M. Beleggia, M.A. Schofield, G.F. Neumark, Y. Zhu, J. Appl. Phys. 97, 10E702 (2005).

    Google Scholar 

  10. J.W. Lau, M. Beleggia, Y. Zhu, J. Appl. Phys. 102, 043906 (2007).

    Google Scholar 

  11. H. Hu, H. Wang, M.R. McCartney, D.J. Smith, Phys. Rev. B. 73, 153401 (2006).

    Google Scholar 

  12. C. Brownlie, S. McVitie, J.N. Chapman, C.D.W. Wilkinson, J. Appl. Phys. 100, 033902 (2006).

    Google Scholar 

  13. T.J. Bromwich, T. Kasama, R.K.K. Chong, R.E. Dunin-Borkowski, A.K. Petford-Long, O.G. Heinonen, C.A. Ross, Nanotechnology 17, 4367 (2006).

    Google Scholar 

  14. Y. Togawa, K. Harada, T. Akashi, H. Kasai, T. Matsuda, A. Maeda, A. Tonomura, Physica C 426, 141 (2005).

    Google Scholar 

  15. A. Tonomura, H. Kasai, O. Kamimura, T. Matsuda, K. Harada, T. Yoshida, T. Akashi, J. Shimoyama, K. Kishio, T. Hanaguri, K. Kitazawa, T. Masui, S. Tajima, N. Koshizuka, P.L. Gammel, D. Bishop, M. Sasase, S. Okayasu, Phys. Rev. Lett. 88, 237001 (2002).

    Google Scholar 

  16. J.C.H. Spence, W. Lo, M. Kuwabara, Ultramicroscopy 33, 69 (1990).

    Google Scholar 

  17. F.M. Ross, R. Hull, D. Bahnck, J.C. Bean, L.J. Peticolas, R.A. Hamm, H.A. Huggins, J. Vac. Sci. Technol. B 10, 2008 (1992).

    Google Scholar 

  18. F.M. Ross, R. Hull, D. Bahnck, J.C. Bean, L.J. Peticolas, C.A. King, Appl. Phys. Lett. 62, 1426 (1993).

    Google Scholar 

  19. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  20. A. Radisic, P.M. Vereecken, P.C. Searson, F.M. Ross, Surf. Sci. 600, 1817 (2006).

    Google Scholar 

  21. A. Radisic, F.M. Ross, P.C. Searson, J. Phys. Chem. B 110, 7862 (2006).

    Google Scholar 

  22. A. Lenk, H. Lichte, U. Muehle, J. Electron. Microsc. 54, 351 (2005).

    Google Scholar 

  23. S. Frabboni, G. Matteucci, G. Pozzi, M. Vanzi, Phys. Rev. Lett. 55, 2196 (1985).

    Google Scholar 

  24. W.D. Rau, P. Schwander, A. Ourmazd, Phys. Status Solidi B 222, 213 (2000).

    Google Scholar 

  25. W.D. Rau, P. Schwander, F.H. Baumann, W. Hoppner, A. Ourmazd, Phys. Rev. Lett. 82, 2614 (1999).

    Google Scholar 

  26. A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley, Phys. Rev. Lett. 88, 238302 (2002).

    Google Scholar 

  27. A.C. Twitchett, R.E. Dunin-Borkowski, R.F. Broom, P.A. Midgley, J. Phys.: Condens. Matter 16, S181 (2004).

    Google Scholar 

  28. G. Matteucci, G.F. Missiroli, M. Muccini, G. Pozzi, Ultramicroscopy 45, 77 (1992).

    Google Scholar 

  29. J. Cumings, A. Zettl, M.R. McCartney, J.C.H. Spence, Phys. Rev. Lett. 88, 056804 (2002).

    Google Scholar 

  30. X. Portier, E.Y. Tsymbal, A.K. Petford-Long, T.C. Anthony, J.A. Brug, Phys. Rev. B. 58, R591 (1998).

    Google Scholar 

  31. F. Junginger, M. Kläui, D. Backes, U. Rüdiger, T. Kasama, R.E. Dunin-Borkowski, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, Appl. Phys. Lett. 90, 132506 (2007).

    Google Scholar 

  32. Y. Naitoh, K. Takayanagi, M. Tomitori, Surf. Sci. 358, 208 (1996).

    Google Scholar 

  33. J. Yamashita, H. Hirayama, Y. Ohshima, K. Takayanagi, Appl. Phys. Lett. 74, 2450 (1999).

    Google Scholar 

  34. K. Svensson, Y. Jompol, H. Olin, E. Olsson, Rev. Sci. Instrum. 74, 4945 (2003).

    Google Scholar 

  35. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998).

    Google Scholar 

  36. D. Erts, H. Olin, L. Ryen, E. Olsson, A. Tholen, Phys. Rev. B. 61, 12725 (2000).

    Google Scholar 

  37. D.R. Strachan, D.E. Smith, M.D. Fischbein, D.E. Johnston, B.S. Guiton, M. Drndic, D.A. Bonnell, A.T. Johnson, Nano Lett. 6, 441 (2006).

    Google Scholar 

  38. Z.L. Wang, P. Poncharal, W.A. de Heer, Pure Appl. Chem. 72, 209 (2000).

    Google Scholar 

  39. Z.L. Wang, P. Poncharal, W.A. de Heer, J. Phys. Chem. Solids 61, 1025 (2000).

    Google Scholar 

  40. Z.L. Wang, P. Poncharal, W.A. de Heer, Microsc. Microanal. 6, 224 (2000).

    Google Scholar 

  41. A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Nature 424, 408 (2003).

    Google Scholar 

  42. S.J. Papadakis, A.R. Hall, P.A. Williams, L. Vicci, M.R. Falvo, R. Superfine, S. Washburn, Phys. Rev. Lett. 93, 146101 (2004).

    Google Scholar 

  43. P.A. Williams, S.J. Papadakis, A.M. Patel, M.R. Falvo, S. Washburn, R. Superfine, Phys. Rev. Lett. 89, 255502 (2002).

    Google Scholar 

  44. P.A. Williams, S.J. Papadakis, A.M. Patel, M.R. Falvo, S. Washburn, R. Superfine, Appl. Phys. Lett. 82, 805 (2003).

    Google Scholar 

  45. J.C. Meyer, M. Paillet, S. Roth, Science 309, 1539 (2005).

    Google Scholar 

  46. J.C. Meyer, J. Cech, B. Hornbostel, S. Roth, Phys. Status Solidi B 243, 3500 (2006).

    Google Scholar 

  47. J. Cumings, P. G. Collins, A. Zettl, Nature 406, 586 (2000).

    Google Scholar 

  48. J. Cumings, A. Zettl, Science 289, 602 (2000).

    Google Scholar 

  49. J. Cumings, A. Zettl, Phys. Rev. Lett. 93, 086801 (2004).

    Google Scholar 

  50. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Science 283, 1513 (1999).

    Google Scholar 

  51. T. Kizuka, K. Yamada, S. Deguchi, M. Naruse, N. Tanaka, Phys. Rev. B. 55, R7398 (1997).

    Google Scholar 

  52. A.M. Minor, J.W. Morris, E.A. Stach, Appl. Phys. Lett. 79, 1625 (2001).

    Google Scholar 

  53. K. Jensen, Ç. Girit, W. Mickelson, A. Zettl, Phys. Rev. Lett. 96, 215503 (2006).

    Google Scholar 

  54. M.I. Lutwyche, Y. Wada, Appl. Phys. Lett. 66, 2807 (1995).

    Google Scholar 

  55. B.C. Regan, S. Aloni, R.O. Ritchie, U. Dahmen, A. Zettl, Nature 428, 924 (2004).

    Google Scholar 

  56. K. Svensson, H. Olin, E. Olsson, Phys. Rev. Lett. 93, 145901 (2004).

    Google Scholar 

  57. K.J. Ziegler, D.M. Lyons, J.D. Holmes, D. Erts, B. Polyakov, H. Olin, K. Svensson, E. Olsson, Appl. Phys. Lett. 84, 4074 (2004).

    Google Scholar 

  58. B.C. Regan, S. Aloni, K. Jensen, A. Zettl, Appl. Phys. Lett. 86, 123119 (2005).

    Google Scholar 

  59. M. Sveningsson, K. Hansen, K. Svensson, E. Olsson, E.E.B. Campbell, Phys. Rev. B. 72, 85429 (2005).

    Google Scholar 

  60. K. Jensen, W. Mickelson, W. Han, A. Zettl, Appl. Phys. Lett. 86, 173107 (2005).

    Google Scholar 

  61. T.D. Yuzvinsky, W. Mickelson, S. Aloni, G.E. Begtrup, A. Kis, A. Zettl, Nano Lett. 6, 2718 (2006).

    Google Scholar 

  62. A. Koshio, M. Yudasaka, S. Iijima, J. Phys. Chem. C 111, 10 (2007).

    Google Scholar 

  63. A.N. Chiaramonti, D.K. Schreiber, B. Kabius, W.F. Egelhoff, A.K. Petford-Long, Microsc. Microanal. 13, 626CD (2007).

    Google Scholar 

  64. T. Brintlinger, Y. Qi, K.H. Baloch, D. Goldhaber-Gordon, J. Cumings, arxiv.org/archive/cond-mat (2007); arXiv:0708.1522.

  65. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature 439, 303 (2006).

    Google Scholar 

  66. C. Jooss, L. Wu, T. Beetz, R.F. Klie, M. Beleggia, M.A. Schofield, S. Schramm, J. Hoffman, Y. Zhu, Proc. Natl. Acad. Sci. 104, 13597 (2007).

    Google Scholar 

  67. A.K. Petford-Long, J.N. Chapman, in Magnetic Microscopy of Nanostructures 4, H. Hopster, H.P. Oepen, Eds., (Springer, Berlin, 2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumings, J., Olsson, E., Petford-Long, A.K. et al. Electric and Magnetic Phenomena Studied by In Situ Transmission Electron Microscopy. MRS Bulletin 33, 101–106 (2008). https://doi.org/10.1557/mrs2008.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.22

Navigation