Skip to main content

Time-Resolved Electrostatic and Kelvin Probe Force Microscopy

  • Chapter
  • First Online:
Kelvin Probe Force Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

Electrostatic (EFM) and Kelvin probe force microscopy (KPFM) have contributed significantly to the understanding of nanoscale electronic properties and the structure-property relationship in numerous electronic and optoelectronic materials and device systems. In many applications, knowledge about the dynamics of electronic processes is of high importance to understand limitations and improve device performance. Both EFM and KPFM typically measure on time scales of milliseconds to tens of milliseconds, which provides access to dynamic processes on that time scale. Nevertheless, only a limited number of studies have made use of this time resolution and investigated dynamic effects. In addition, more recently several methods have been presented that extend the time resolution to even faster processes. The different methods are presented in detail and some relevant results obtained for a variety of materials and device systems are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991)

    Article  ADS  Google Scholar 

  2. K. Okamotoa, Y. Sugawarab, S. Morita, The elimination of the ‘artifact’ in the electrostatic force measurement using a novel noncontact atomic force microscope/electrostatic force microscope. Appl. Surf. Sci. 188, 381–385 (2002)

    Article  ADS  Google Scholar 

  3. E. Palleau, L. Ressier, Ł. Borowik, T. Mélin, Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy. Nanotechnology 21, 225706 (2010)

    Google Scholar 

  4. K.M. Burson, W.G. Cullen, S. Adam, C.R. Dean, K. Watanabe, T. Taniguchi, P. Kim, M.S. Fuhrer, Direct imaging of charged impurity density in common graphene substrates. Nano Lett. 13, 3576–3580 (2013)

    Article  ADS  Google Scholar 

  5. L. Gross, F. Mohn, P. Liljeroth, J. Repp, F.J. Giessibl, G. Meyer, Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428 (2009)

    Article  ADS  Google Scholar 

  6. F. Mohn, L. Gross, N. Moll, G. Meyer, Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012)

    Article  ADS  Google Scholar 

  7. S. Kawai, A. Sadeghi, X. Feng, P. Lifen, R. Pawlak, T. Glatzel, A. Willand, A. Orita, J. Otera, S. Goedecker, E. Meyer, Obtaining detailed structural information about supramolecular systems on surfaces by combining high-resolution force microscopy with ab initio calculations. ACS Nano 7, 9098–9105 (2013)

    Article  Google Scholar 

  8. S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau, M.Ch. Lux-Steiner, High-resolution work function imaging of single grains of semiconductor surfaces. Appl. Phys. Lett. 80, 2979 (2002)

    Article  ADS  Google Scholar 

  9. S. Sadewasser, P. Jelinek, Ch.-K. Fang, O. Custance, Y. Yamada, Y. Sugimoto, M. Abe, S. Morita, New insights on atomic-resolution frequency-modulation Kelvin probe force microscopy imaging on semiconductors. Phys. Rev. Lett. 103, 266103 (2009)

    Google Scholar 

  10. Th. Glatzel, D. Fuertes Marrón, Th. Schedel-Niedrig, S. Sadewasser, M.Ch. Lux-Steiner, CuGaSe2 solar cell cross section studied by Kelvin probe force microscopy in ultrahigh vacuum. Appl. Phys. Lett. 81, 2017 (2002)

    Google Scholar 

  11. Th. Glatzel, S. Sadewasser, R. Shikler, Y. Rosenwaks, M.Ch. Lux-Steiner, Kelvin probe force microscopy on III-V semiconductors: the effect of surface defects on the local work function. Mater. Sci. Eng. B 102, 138 (2003)

    Article  Google Scholar 

  12. S. Sadewasser, Th. Glatzel, M. Rusu, A. Jäger-Waldau, M.Ch. Lux-Steiner, Surface photo voltage measurements for the characterization of the CuGaSe2/ZnSe interface using Kelvin probe force microscopy, in Proceedings of 17th EU Photovoltaics Solar Energy Conference (München, 2001), p. 1155

    Google Scholar 

  13. D.C. Coffey, D.S. Ginger, Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 5, 735 (2006)

    Article  ADS  Google Scholar 

  14. J.L. Luria, K.A. Schwarz, M.J. Jaquith, R.G. Hennig, J.A. Marohn, Spectroscopic characterization of charged defects in polycrystalline pentacene by time- and wavelength-resolved electric force microscopy. Adv. Mater. 23, 624–628 (2011)

    Article  Google Scholar 

  15. P.A. Cox, M.S. Glaz, J.S. Harrison, S.R. Peurifoy, D.C. Coffey, D.S. Ginger, Imaging charge transfer state excitations in polymer/fullerene solar cells with time-resolved electrostatic force microscopy. J. Phys. Chem. Lett. 6, 2852–2858 (2015)

    Article  Google Scholar 

  16. A. Schirmeisen, A. Taskiran, H. Fuchs, B. Roling, S. Murugavel, H. Bracht, F. Natrup, Probing ion transport at the nanoscale: time-domain electrostatic force spectroscopy on glassy electrolytes. Appl. Phys. Lett. 85, 2053 (2004)

    Article  ADS  Google Scholar 

  17. T.N. Ng, J.A. Marohn, M.L. Chabinyc, Comparing the kinetics of bias stress in organic field-effect transistors with different dielectric interfaces. J. Appl. Phys. 100, 084505 (2006)

    Article  ADS  Google Scholar 

  18. M. Jaquith, E.M. Muller, J.A. Marohn, Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene. J. Phys. Chem. B 111, 7711 (2007)

    Article  Google Scholar 

  19. M.J. Jaquith, J.E. Anthony, J.A. Marohn, Long-lived charge traps in functionalized pentacene and anthradithiophene studied by time-resolved electric force microscopy. J. Mater. Chem. 19, 6116–6123 (2009)

    Article  Google Scholar 

  20. L. Bürgi, T. Richards, M. Chiesa, R.H. Friend, H. Sirringhaus, A microscopic view of charge transport in polymer transistors. Synth. Met. 146, 297–309 (2004)

    Article  Google Scholar 

  21. E. Strelcov, S. Jesse, Y.-L. Huang, Y.-C. Teng, I.I. Kravchenko, Y.-H. Chu, S.V. Kalinin, Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices. ACS Nano 7, 6806–6815 (2013)

    Article  Google Scholar 

  22. R. Giridharagopal et al., Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. Nano Lett. 12, 893–898 (2012)

    Article  ADS  Google Scholar 

  23. D.U. Karatay, J.S. Harrison, M.S. Glaz, R. Giridharagopal, D.S. Ginger, Fast time-resolved electrostatic force microscopy: achieving sub-cycle time resolution. Rev. Sci. Instrum. 87, 053702 (2016)

    Article  ADS  Google Scholar 

  24. M. Takihara, T. Takahashi, T. Ujihara, Minority carrier lifetime in polycrystalline silicon solar cells studied by photoassisted Kelvin probe force microscopy. Appl. Phys. Lett. 93, 021902 (2008)

    Google Scholar 

  25. G. Shao, M.S. Glaz, F. Ma, H. Ju, D.S. Ginger, Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics. ACS Nano 8, 10799–10807 (2014)

    Google Scholar 

  26. Ł. Borowik, H. Lepage, N. Chevalier, D. Mariolle, O. Renault, Measuring the lifetime of silicon nanocrystal solar cell photo-carriers by using Kelvin probe force microscopy and x-ray photoelectron spectroscopy. Nanotechnology 25, 265703 (2014)

    Google Scholar 

  27. P.A. Fernández Garrillo, Ł. Borowik, F. Caffy, R. Demadrille, B. Grévin, Photo-carrier multi-dynamical imaging at the nanometer scale in organic and inorganic solar cells. ACS Appl. Mater. Interfaces 8, 31460–31468 (2016)

    Article  Google Scholar 

  28. D. Moerman, H. Kim, A.E. Colbert, S. Graham, D.S. Ginger, The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells. Appl. Phys. Lett. 108, 113301 (2016)

    Article  ADS  Google Scholar 

  29. P. Narchi, R. Cariou, M. Foldyna, P. Prod’homme, P. Roca i Cabarrocas, Nanoscale investigation of carrier lifetime on the cross section of epitaxial silicon solar cells using Kelvin probe force microscopy. IEEE J. Photovolt. 6, 1576–1580 (2016)

    Google Scholar 

  30. J. Murawski, T. Graupner, P. Milde, R. Raupach, U. Zerweck-Trogisch, L.M. Eng, Pump-probe Kelvin-probe force microscopy: principle of operation and resolution limits. J. Appl. Phys. 118, 154302 (2015)

    Google Scholar 

  31. J. Murawski, T. Mönch, P. Milde, M.P. Hein, S. Nicht, U. Zerweck-Trogisch, L.M. Eng, Tracking speed bumps in organic field-effect transistors via pump-probe Kelvin-probe force microscopy. J. Appl. Phys. 118, 244502 (2015)

    Google Scholar 

  32. Z. Schumacher, A. Spielhofer, Y. Miyahara, P. Grütter, The limit of time resolution in frequency modulation atomic force microscopy by a pump-probe approach. Appl. Phys. Lett. 110, 053111 (2017)

    Google Scholar 

  33. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)

    Article  ADS  Google Scholar 

  34. B. Roling, A. Schirmeisen, H. Bracht, A. Taskiran, H. Fuchs, S. Murugavel, F. Natrup, Nanoscopic study of the ion dynamics in a LiAlSiO4 glass ceramic by means of electrostatic force spectroscopy. Phys. Chem. Chem. Phys. 7, 1472 (2005)

    Article  Google Scholar 

  35. A. Schirmeisen, A. Taskiran, H. Fuchs, H. Bracht, S. Murugavel, B. Roling, Fast interfacial ionic conduction in nanostructured glass ceramics. Phys. Rev. Lett. 98, 225901 (2007)

    Article  ADS  Google Scholar 

  36. A. Taskiran, A. Schirmeisen, H. Fuchs, H. Bracht, B. Roling, Time-domain electrostatic force spectroscopy on nanostructured lithium-ion conducting glass ceramics: analysis and interpretation of relaxation times. Phys. Chem. Chem. Phys. 11, 5499–5505 (2009)

    Article  Google Scholar 

  37. L. Kronik, Y. Shapira, Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999)

    Article  ADS  Google Scholar 

  38. Th. Dittrich, S. Bönisch, P. Zabel, S. Dube, High precision differential measurement of surface photovoltage transients on ultrathin CdS layers. Rev. Sci. Instr. 79, 113903 (2008)

    Article  ADS  Google Scholar 

  39. O.G. Reid, G.E. Rayermann, D.C. Coffey, D.S. Ginger, Imaging local trap formation in conjugated polymer solar cells: a comparison of time-resolved electrostatic force microscopy and scanning Kelvin probe imaging. J. Phys. Chem. C 114, 20672–20677 (2010)

    Google Scholar 

  40. G. Shao, G.E. Rayermann, E.M. Smith, D.S. Ginger, Morphology-dependent trap formation in bulk heterojunction photodiodes. J. Phys. Chem. B 117, 4654–4660 (2013)

    Article  Google Scholar 

  41. T.M. Clarke, J.R. Durrant, Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010)

    Article  Google Scholar 

  42. A. Henning, G. Günzburger, R. Jöhr, Y. Rosenwaks, B. Bozic-Weber, C.E. Housecroft, E.C. Constable, E. Meyer, and Th. Glatzel, Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes. Beilstein J. Nanotechnol. 4, 418–428 (2013)

    Google Scholar 

  43. M. Beu, K. Klinkmüller, D. Schlettwein, Use of Kelvin probe force microscopy to achieve a locally and time-resolved analysis of the photovoltage generated in dye-sensitized ZnO electrodes. Phys. Status Solidi A 211, 1960–1965 (2014)

    Google Scholar 

  44. J.L. Garrett, E.M. Tennyson, M. Hu, J. Huang, J.N. Munday, M.S. Leite, Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells. Nano Lett. 17, 2554 (2017)

    Article  ADS  Google Scholar 

  45. J.L. Garrett, J.N. Munday, Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy. Nanotechnology 27, 245705 (2016)

    Google Scholar 

  46. D.W. deQuilettes, W. Zhang, V.M. Burlakov, D.J. Graham, T. Leijtens, A. Osherov, V. Bulovic, H.J. Snaith, D.S. Ginger, S.D. Stranks, Photo-induced halide redistribution in organic-inorganic perovskite films. Nat. Commun. 7, 11683 (2016)

    Google Scholar 

  47. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014)

    Article  ADS  Google Scholar 

  48. A. Salleo, R.A. Street, Light-induced bias stress reversal in polyfluorene thin-film transistors. J. Appl. Phys. 94, 471 (2003)

    Article  ADS  Google Scholar 

  49. Ch. Melzer, Ch. Siol, H. von Seggern, Transit phenomena in organic field-effect transistors through Kelvin-probe force microscopy. Adv. Mater. 25, 4315–4319 (2013)

    Google Scholar 

  50. A. Heeger, Bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10–28 (2014)

    Article  Google Scholar 

  51. S. Cowan, A. Roy, A. Heeger, Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207 (2010)

    Article  ADS  Google Scholar 

  52. C. Shuttle, N. Treat, J. Douglas, J. Fréchet, M. Chabinyc, Deep energetic trap states in organic photovoltaic devices. Adv. Energy Mater. 2, 111–119 (2012)

    Article  Google Scholar 

  53. M. Nyman, O. Sandberg, R. Österbacka, 2D and trap-assisted 2D Langevin recombination in polymer: fullerene blends. Adv. Energy Mater. 5, 1400890 (2015)

    Google Scholar 

  54. C. McNeill, I. Hwang, N. Greenham, Photocurrent transients in all-polymer solar cells: trapping and detrapping effects. J. Appl. Phys. 106, 024507 (2009)

    Article  ADS  Google Scholar 

  55. C.L. Ma, P.O. Lauritzen, A simple power diode model with forward and reverse recovery. IEEE Trans. Power Electron. 8, 342–346 (1993)

    Article  Google Scholar 

  56. R.H. Kingston, Switching time in junction diodes and junction transistors. Proc. IRE 42, 829–834 (1954)

    Article  Google Scholar 

  57. M. Yamakazi, H. Kobayashi, S. Shinohara, Forward transient of PiN and super junction diodes, in Proceeding 16th Symposium Power Semiconductor Devices ICs (2004), pp. 197–200

    Google Scholar 

  58. D.C. Lewis, On the determination of the minority carrier lifetime from the reverse recovery transient of pnR diodes. Solid-State Electron. 18, 87–91 (1975)

    Article  ADS  Google Scholar 

  59. S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A. Mourou, F.W. Smith, A.R. Calawa, Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Appl. Phys. Lett. 59, 3276 (1991)

    Article  ADS  Google Scholar 

  60. D.P.E. Smith, Limits of force microscopy. Rev. Sci. Instrum. 66, 3191 (1995)

    Article  ADS  Google Scholar 

  61. U. Zerweck, C. Loppacher, T. Otto, S. Grafström, L.M. Eng, Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Sadewasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadewasser, S., Nicoara, N. (2018). Time-Resolved Electrostatic and Kelvin Probe Force Microscopy. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_5

Download citation

Publish with us

Policies and ethics