Skip to main content
Log in

Mechanics of Bioinspired and Biomimetic Fibrillar Interfaces

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Materials that are inspired by or are mimics of natural fibrillar surfaces in lizards and insects aim to achieve enhanced interfacial adhesion and contact properties by means of a fibrillar architecture. Studies of the mechanics of deformation and adhesion of such materials help to explain how they work and are aiding the design of their architecture. This article discusses some of the issues addressed by these studies, such as how can a fibrillar interface be made stronger and tougher than a flat control, and how does one enhance its ability to make contact to a variety of substrates?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Creton, MRS Bull. 28 (6), 1 (2003).

    Google Scholar 

  2. M. Scherge, S.N. Gorb, Biological Micro- and Nanotribology: Nature’s Solutions (Springer, Berlin, 2001).

    Book  Google Scholar 

  3. N.W. Rizzo et al., J. R. Soc. Interface 3, 441 (2006).

    Article  CAS  Google Scholar 

  4. N.J. Glassmaker, A. Jagota, C.-Y. Hui, J. Kim, J. R. Soc. Interface 1, 22 (2004).

    Article  Google Scholar 

  5. A. Rajan, MS thesis (Lehigh University, 2006).

  6. N.J. Glassmaker et al., Proc. Natl. Acad. Sci. USA (2007) in press.

  7. K. Autumn et al., Nature 405, 681 (2000).

    Article  CAS  Google Scholar 

  8. T. Eisner, D.J. Aneshansley, Proc. Natl. Acad. Sci. USA 97, 6568 (2000).

    Article  CAS  Google Scholar 

  9. R. Ruibal, V. Ernst, J. Morphology 117, 271 (1965).

    Article  CAS  Google Scholar 

  10. U. Hiller, J. Bombay Nat. Hist. Soc. 73, 278 (1976).

    Google Scholar 

  11. U. Hiller, Z. Morph. Tiere 62, 307 (1968).

    Article  Google Scholar 

  12. E.E. Williams, J.A. Peterson, Science 215, 1509 (1982).

    Article  CAS  Google Scholar 

  13. H. Gao et al., Mech. Mater. 37, 275 (2005).

    Article  Google Scholar 

  14. S.N. Gorb, Proc. R. Soc. London, Ser. B 265, 747 (1998).

    Article  Google Scholar 

  15. K. Autumn et al., Proc. Natl. Acad. Sci. USA 99, 12252 (2002).

    Article  CAS  Google Scholar 

  16. W. Sun et al., Biophys. J. 89, L14 (2005).

    Article  CAS  Google Scholar 

  17. G. Huber et al., Proc. Natl. Acad. Sci. USA 102, 16293 (2005).

    Article  CAS  Google Scholar 

  18. G. Huber, S.N. Gorb, R. Spolenak, E. Arzt, Biol. Lett. 1, 2 (2005).

    Article  Google Scholar 

  19. A.K. Geim et al., Nature Mater. 2, 461 (2003).

    Article  CAS  Google Scholar 

  20. C.-Y. Hui, N.J. Glassmaker, T. Tang, A. Jagota, J. R. Soc. Interface 1, 35 (2004).

    Article  Google Scholar 

  21. B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, A. Dhinojwala, Chem. Commun. 30, 3799 (2005).

    Article  CAS  Google Scholar 

  22. C. Majidi et al., Phys. Rev. Lett. 97, 076103 (2006).

    Article  CAS  Google Scholar 

  23. A. Peressadko, S.N. Gorb, J. Adhes. 80, 247 (2004).

    Article  CAS  Google Scholar 

  24. M. Sitti, R.S. Fearing, J. Adhes. Sci. Technol. 17, 1055 (2003).

    Article  CAS  Google Scholar 

  25. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, J. R. Soc. Interface 4 (13) 271 (2007).

    Article  CAS  Google Scholar 

  26. S. Kim, M. Sitti, Appl. Phys. Lett. 89, 261911 (2006).

    Article  CAS  Google Scholar 

  27. A. Ghatak et al., Proc. R. Soc. London, Ser. A 460, 2725 (2004).

    Article  Google Scholar 

  28. J.Y. Chung, M.K. Chaudhury, J. R. Soc. Interface 2, 55 (2005).

    Article  Google Scholar 

  29. A.J. Crosby, M. Hageman, A. Duncan, Langmuir 21, 11738 (2005).

    Article  CAS  Google Scholar 

  30. A. Jagota, S.J. Bennison, Integr. Comp. Biol. 42, 1140 (2002).

    Article  Google Scholar 

  31. N.J. Glassmaker, A. Jagota, C.-Y. Hui, Acta Biomater. 1, 367 (2005).

    Article  Google Scholar 

  32. M. Varenberg, A. Peressadko, S. Gorb, E. Arzt, Appl. Phys. Lett. 89, 121905 (2006).

    Article  CAS  Google Scholar 

  33. C.-Y. Hui, N.J. Glassmaker, A. Jagota, J. Adhes. 81, 699 (2005).

    Article  CAS  Google Scholar 

  34. B. Bhushan, A.G. Peressadko, T.W. Kim, J. Adhes. Sci. Technol. 20, 1475 (2006).

    Article  CAS  Google Scholar 

  35. T. Tang, C.Y. Hui, N.J Glassmaker, J. R. Soc. Interface 2, 505 (2005).

    Article  Google Scholar 

  36. H. Gao, B. Ji, M.J. Buehler, H. Yao, Mech. Chem. Biosys. 1, 37 (2004).

    Google Scholar 

  37. H. Gao et al., Proc. Natl. Acad. Sci. USA 100, 5597 (2003).

    Article  CAS  Google Scholar 

  38. E. Arzt, S. Gorb, R. Spolenak, Proc. Natl. Acad. Sci. USA 100, 10603 (2003).

    Article  CAS  Google Scholar 

  39. B.N.J. Persson, J. Chem. Phys. 118, 7614 (2003).

    Article  CAS  Google Scholar 

  40. C.Y. Hui, A. Jagota, Y.Y. Lin, E.J. Kramer, Langmuir 18, 1394 (2002).

    Article  CAS  Google Scholar 

  41. K.G. Sharp et al., Langmuir 20, 6430 (2004).

    Article  CAS  Google Scholar 

  42. B.N.J. Persson, S. Gorb, J. Chem. Phys. 119, 11437 (2003).

    Article  CAS  Google Scholar 

  43. F. Haas, S. Gorb, Arthropod Struct. Dev. 33, 45 (2004).

    Article  Google Scholar 

  44. C. Majidi et al., Phys. Rev. Lett. 97, 1 (2006).

    Article  CAS  Google Scholar 

  45. S. Gorb, M. Scherge, Proc. R. Soc. London, Ser. B 267, 1239 (2000).

    Article  CAS  Google Scholar 

  46. S.N. Gorb et al., Integr. Comp. Biol. 42, 1127 (2002).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagota, A., Hui, CY., Glassmaker, N.J. et al. Mechanics of Bioinspired and Biomimetic Fibrillar Interfaces. MRS Bulletin 32, 492–495 (2007). https://doi.org/10.1557/mrs2007.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.83

Navigation