Skip to main content

Biological Fibrillar Adhesives: Functional Principles and Biomimetic Applications

  • Living reference work entry
  • First Online:
Handbook of Adhesion Technology

Abstract

Specific mechanisms of adhesion found in nature are discussed in the previous chapter (chapter “Bioadhesives”). One of the most discussed biological systems in the last decade are the so-called fibrillar adhesives of insects, spiders, and geckos. These systems are adapted for dynamic adhesion of animals during locomotion and, therefore, have some extraordinary properties, such as (1) directionality, (2) preload by shear, (3) quick detachment by peeling, (4) low dependence on the substrate chemistry, (5) reduced ability to contamination and self-cleaning, and (6) the absence or strong reduction of self-adhesion. In the present chapter, we review functional principles of such biological systems in various animal groups with an emphasis on insects and discuss their biomimetic potential. The data on ultrastructure and mechanics of materials of adhesive pads, movements during contact formation and breakage, the role of the fluid in the contact between the pad and substrate are presented here. The main goal is to demonstrate how a comparative experimental approach in studies of biological systems aids in the development of novel adhesive materials and systems. The microstructured adhesive systems, inspired by studies of biological systems of insects, spiders, and geckos, are also shortly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alibardi L (1997) Ultrastructural and autoradiographic analysis of setae development in the embryonic pad lamellae of the lizard Anolis lineatopus. Ann Sci Nat Zool Biol Anim 18:51

    Google Scholar 

  • Arzt E, Gorb SN, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100:10603

    Article  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R (2000) Adhesion force measurements on single gecko setae. Nature 405:681

    Article  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen M (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 99:12252

    Article  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569

    Article  Google Scholar 

  • Autumn K, Gravish N, Wilkinson M, Santos D, Spenko M, Cutkosky M (2007) Frictional adhesion of natural and synthetic gecko setal arrays. In: Proceedings of 30th annual meeting adhesion society, Inc, The Adhesion Society, Blacksburg, VA

    Google Scholar 

  • Barnes WJP (2006) Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J Comp Physiol A 192:1179

    Article  Google Scholar 

  • Bauchhenss E (1979) Die Pulvillen von Calliphora erythrocephala (Diptera, Brachycera) als Adhäsionsorgane. Zoomorphologie 93:99

    Article  Google Scholar 

  • Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: Byern J, Grunwald I (eds) Biological adhesive systems. From nature to technical and medical application. Springer, Vienna, pp 111–152

    Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthrop Syst Phylogeny 64(1):3–25

    Google Scholar 

  • Borodich FM, Gorb EV, Gorb SN (2010) Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach. Appl Phys A Mater Sci Process 100:63

    Article  Google Scholar 

  • Breckwoldt WA, Daltorio K, Heepe L, Horchler AD, Gorb SN, Quinn R (2015) Walking inverted on ceilings with wheel-legs and micro-structured adhesives. In: Intelligent robots and systems (IROS), IEEE/RSJ international conference on. IEEE, Hamburg, Germany, pp 3308–3313

    Google Scholar 

  • Bullock JMR, Federle W (2011) The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula. Insect Sci 18:298

    Article  Google Scholar 

  • del Campo A, Greiner C, Arzt E (2007) Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 23:10235

    Article  Google Scholar 

  • Chung JY, Chaudhury MK (2005) Roles of discontinuities in bio-inspired adhesive pads. J R Soc Interface 2:55

    Article  Google Scholar 

  • Creton C, Gorb SN (2007) Sticky feet: from animals to materials. MRS Bull 32:466

    Article  Google Scholar 

  • Daltorio KA, Gorb SN, Peressadko A, Horchler AD, Ritzmann RE, Quinn RD (2005) A robot that climbs walls using micro-structured polymer feet. In: Proceedings of international conference on climbing and walking robots CLAWAR, London, UK, pp 131–138

    Google Scholar 

  • Davies J, Haq S, Hawke T, Sargent JP (2009) A practical approach to the development of a synthetic Gecko tape. Int J Adhes Adhes 29:380

    Article  Google Scholar 

  • Dening K, Heepe L, Afferrante L, Carbone G, Gorb SN (2014) Adhesion control by inflation: implications from biology to artificial attachment device. Appl Phys A Mater Sci Process 116:567

    Article  Google Scholar 

  • Edwards JS, Tarkanian M (1970) The adhesive pads of Heteroptera: a re-examination. Proc Roy Ent Soc Lond A 45:1

    Google Scholar 

  • Eimüller T, Guttmann P, Gorb SN (2008) Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy. J Exp Biol 211:1958

    Article  Google Scholar 

  • Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci U S A 97:6568

    Article  Google Scholar 

  • England MW, Sato T, Yagihashi M, Hozumi A, Gorb SN, Gorb EV (2016) Surface roughness rather than surface chemistry essentially affects insect adhesion. Beistein J Nanotechnol 7:1471

    Article  Google Scholar 

  • Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611

    Article  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100

    Article  Google Scholar 

  • Filippov AE, Popov VL, Gorb SN (2011) Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J Thero Biol 276:126

    Article  MathSciNet  Google Scholar 

  • Gao H, Wang X, Yao H, Gorb SN, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275

    Article  Google Scholar 

  • Gaume L, Perret P, Gorb E, Gorb S, Labat J-J, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arth Struct Dev 33:103

    Article  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461

    Article  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2009) Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19:185

    Article  Google Scholar 

  • Geiselhardt SF, Federle W, Prüm B, Geiselhardt S, Lamm S, Peschke K (2010) Impact of chemical manipulation of tarsal liquids on attachment in the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol 56:398

    Article  Google Scholar 

  • Gladun D, Gorb SN, Frantsevich LI (2009) Alternative tasks of the insect arolium with special reference to hymenoptera. In: Gorb SN (ed) Functional surfaces in biology – adhesion related phenomena, vol 2. Springer, Dordrecht/Heidelberg/London/New York, pp 67–103

    Chapter  Google Scholar 

  • Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc Roy Soc Lond B 265:747

    Article  Google Scholar 

  • Gorb SN (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc Roy Soc Lond B 267:1239

    Article  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Springer, New York

    Google Scholar 

  • Gorb SN (2005) Uncovering insect stickiness: structure and properties of hairy attachment devices. Amer Ent 51:31

    Article  Google Scholar 

  • Gorb SN (2007) Smooth Attachment Devices in Insects: Functional Morphology and Biomechanics. Adv In Insect Phys 34:81

    Article  Google Scholar 

  • Gorb SN (2009) Adhesion in nature. In: Brockmann W, Geiß PL, Klingen J, Schröder B (eds) Adhesive bonding – materials, applications and technology. Wiley-VCH, Weinheim, pp 346–356

    Google Scholar 

  • Gorb SN (2010) Biological and biologically inspired attachment systems. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer Verlag, Berlin, pp 1525–1551

    Chapter  Google Scholar 

  • Gorb SN (2011) Biological fibrillar adhesives: functional principles and biomimetic applications. In: da Silva LFM, Öchsner A, Adams RD (eds) Handbook of adhesion technology, pp 1409–1436. doi:10.1007/978-3-642-01169-6_54

    Chapter  Google Scholar 

  • Gorb SN, Beutel RG (2001) Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88:530

    Article  Google Scholar 

  • Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13

    Article  Google Scholar 

  • Gorb EV, Gorb SN (2006) Do plant waxes make insect attachment structures dirty? Experimental evidence for the contamination hypothesis. In: Herrel A, Speck T, Rowe N (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. Taylor & Francis, Boca Raton, pp 147–162

    Chapter  Google Scholar 

  • Gorb SN, Varenberg M (2007) Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol 21:1175

    Article  Google Scholar 

  • Gorb SN, Varenberg M, Peressadko A, Tuma J (2007a) Biomimetic mushroom-shaped fibrillar adhesive microstructure. J R Soc Interface 4:271

    Article  Google Scholar 

  • Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007b) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspir Biomim 2:S117

    Article  Google Scholar 

  • Gorb EV, Hosoda N, Miksch C, Gorb SN (2010) Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system. J R Soc Interface 7:1571

    Article  Google Scholar 

  • Gottlieb Binder GmbH & Co KG (2017) http://www.binder.de/en/products/geckonanoplast/

  • Greiner C, Arzt E, del Campo A (2009) Hierarchical Gecko - Like Adhesives. Adv Mater 21:479

    Article  Google Scholar 

  • Heepe L, Gorb SN (2014) Biologically inspired mushroom-shaped adhesive microstructures. Annu Rev Mater Res 44:173

    Article  Google Scholar 

  • Heepe L, Varenberg M, Itovich Y, Gorb SN (2011) Suction component in adhesion of mushroom-shaped microstructure. J R Soc Interface 8:585

    Article  Google Scholar 

  • Heepe L, Kovalev AE, Varenberg M, Tuma J, Gorb SN (2012) First mushroom-shaped adhesive microstructure: A review. Thero Appl Mech Lett 2:014008

    Google Scholar 

  • Heepe L, Kovalev AE, Filippov AE, Gorb SN (2013) Adhesion failure at 180 000 frames per second: direct observation of the detachment process of a mushroom-shaped adhesive. Phys Rev Lett 111:104301

    Article  Google Scholar 

  • Heepe L, Carbone G, Pierro E, Kovalev AE, Gorb SN (2014a) Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl Phys Lett 104:011906

    Article  Google Scholar 

  • Heepe L, Kovalev AE, Gorb SN (2014b) Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure. Beilstein J Nanotechnol 5:903

    Article  Google Scholar 

  • Heepe L, Wolff JO, Gorb SN (2016) Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata). Beilstein J Nanotechnol 7:1332

    Article  Google Scholar 

  • Heepe L, Raguseo S, Gorb SN (2017a) An experimental study of double-peeling mechanism inspired by biological adhesive systems. Appl Phys A Mater Sci Process 123:124

    Article  Google Scholar 

  • Heepe L, Petersen DS, Tölle L, Wolff JO, Gorb SN (2017b) Sexual dimorphism in the attachment ability of the ladybird beetle Coccinella septempunctata on soft substrates. Appl Phys A Mater Sci Process 123:34

    Article  Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307

    Article  Google Scholar 

  • Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318

    Article  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2

    Article  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005b) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci U S A 102:16293

    Article  Google Scholar 

  • Hui CY, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35

    Article  Google Scholar 

  • Ishii S (1987) Adhesion of a Leaf Feeding Ladybird Epilachna vigintioctomaculta (Coleoptera: Coccinellidae) on a Virtically Smooth Surface. Appl Entomol Zool 22:222

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces: With Applications to Colloidal and Biological Systems, 2nd edn. Academic, London

    Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140

    Article  Google Scholar 

  • Jagota A, Hui C-Y (2011) Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater Sci Eng R Rep 72:253

    Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301

    Article  Google Scholar 

  • Kampermann M, Kroner E, del Campo A, McMeeking RM, Arzt E (2010) Functional Adhesive Surfaces with “Gecko” Effect: The Concept of Contact Splitting. Adv Eng Mater 12:335

    Article  Google Scholar 

  • Kasem H, Varenberg M (2013) Effect of counterface roughness on adhesion of mushroom-shaped microstructure. J R Soc Interface 10:20130620

    Article  Google Scholar 

  • Kendall K (1975) Thin-film peeling-the elastic term. J Phys D Appl Phys 8:1449

    Article  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733

    Article  Google Scholar 

  • Kim TW, Bhushan B (2007) Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21:1

    Google Scholar 

  • Kim S, Sitti M (2006) Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett 89:26911

    Google Scholar 

  • Kizilkan E, Heepe L, Gorb SN (2013) Underwater adhesion of mushroom-shaped adhesive microstructure: an air-entrapment effect. In: Biological and Biomimetic Adhesives: Challenges and Opportunities. RCS, Cambridge, pp 65–71

    Google Scholar 

  • Kizilkan E, Strueben J, Staubitz A, Gorb SN (2017) Bioinspired photocontrollable microstructured transport device. Sci Robotics 2:eaak9454

    Article  Google Scholar 

  • Kosaki A, Yamaoka R (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn J Appl Entomol Zool 40:47

    Article  Google Scholar 

  • Kovalev AE, Varenberg M, Gorb SN (2012) Wet versus dry adhesion of biomimetic mushroom-shaped microstructures. Soft Matter 8:7560

    Article  Google Scholar 

  • Kwak MK, Pang C, Jeong HE, Kim HN, Yoon H, Jung HS, Suh KY (2011) Towards the next level of bioinspired dry adhesives: new designs and applications. Adv Funct Mater 21:3606

    Article  Google Scholar 

  • Langer MG, Ruppersberg JP, Gorb SN (2004) Adhesion forces measured at the level of a terminal plate of the fly’s seta. Proc R Soc Lond B 271:2209

    Article  Google Scholar 

  • Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Tech 21:1281

    Article  Google Scholar 

  • Niederegger S, Gorb SN (2003) Tarsal movements in flies during leg attachment and detachment on a smooth substrate. J Insect Physiol 49:611

    Article  Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223

    Article  Google Scholar 

  • Niederegger S, Gorb SN, Vötsch W (2001) Fly walking: a compromise between attachment and motion? In: Wisser A, Nachtigall W (eds) Technische Biologie und Bionik. 5. Bionik – Kongress, Dessau 2000. Gustav Fisher Verlag, Stuttgart/Jena/Lübeck/Ulm, pp 327–330

    Google Scholar 

  • Niewiarowski PH, Lopez S, Ge L, Hagan E, Dhinojwala A (2008) Sticky gecko feet: the role of temperature and humidity. PLoS One 3:e2192

    Article  Google Scholar 

  • Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16:1159

    Article  Google Scholar 

  • Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci U S A 104:18595

    Article  Google Scholar 

  • Peisker H, Gorb SN (2012) Evaporation dynamics of tarsal liquid footprints in flies (Calliphora vicina) and beetles (Coccinella septempunctata). J Exp Biol 215:1266

    Article  Google Scholar 

  • Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Commun 4:1661

    Article  Google Scholar 

  • Peisker H, Heepe L, Kovalev AE, Gorb SN (2014) Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles. J R Soc Interface 11:20140752

    Article  Google Scholar 

  • Pelletier Y, Smilowitz Z (1987) Specialized tarsal hairs on adult male Colorado potato beetles, Leptinotarsa decemlineata (Say), hamper its locomotion on smooth surfaces. Can Entomol 119:1139

    Article  Google Scholar 

  • Peressadko A, Gorb SN (2004a) When less is more: experimental evidence for tenacity enhancement by division of contact area. J Adhes 80:247

    Article  Google Scholar 

  • Peressadko A, Gorb SN (2004b) Surface profile and friction force generated by insects. In: Fortschritt-Berichte VDI, Boblan I, Bannasch R (eds) Surface profile and friction force generated by insects, vol 249[15]. VDI Verlag, Düsseldorf, pp 257–263

    Google Scholar 

  • Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614

    Article  Google Scholar 

  • Persson BNJ (2014) On the fractal dimension of rough surfaces. Tribol Lett 54:99

    Article  Google Scholar 

  • Persson BNJ, Gorb SN (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437

    Article  Google Scholar 

  • Popov VL (2010) Contact mechanics and friction: physical principles and applications. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Prowse MS, Wilkinson M, Puthoff JB, Mayer G, Autumn K (2011) Effects of humidity on the mechanical properties of gecko setae. Acta Biomater 7:733

    Article  Google Scholar 

  • Pugno NM (2011) The theory of multiple peeling. Int J Fract 171:185

    Article  Google Scholar 

  • Pugno NM, Gorb SN (2009) Functional mechanism of biological adhesive systems described by multiple peeling approach. In: Proceedings of the 12th international conference on fracture, July 1217, Ottawa

    Google Scholar 

  • Puthoff JB, Prowse MS, Wilkinson M, Autumn K (2010) Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol 213:3699

    Article  Google Scholar 

  • Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8:143

    Article  Google Scholar 

  • Rizzo NW, Gardner KH, Walls D, Keiper-Hrynko JNM, Ganzke TS, Hallahan DL (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3:441

    Article  Google Scholar 

  • Röll B (1995) Epidermal fine structure of the toe tips of Sphaerodactylus cinereus (Reptilia, Gekkonidae). J Zool 235:289

    Article  Google Scholar 

  • Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117:271

    Article  Google Scholar 

  • Russell AP (1975) A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). J Zool (Lond) 176:437

    Article  Google Scholar 

  • Sameoto D, Menon C (2010) Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives. Smart Mater Struct 19:103001

    Article  Google Scholar 

  • Schargott M (2009) A mechanical model of biomimetic adhesive pads with tilted and hierarchical structures. Bioinspir Biomim 4(026002):9

    Google Scholar 

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology: nature’s solutions. Springer, Berlin

    Book  Google Scholar 

  • Schleich HH, Kastle W (1986) Ultrastrukturen an Gecko-Zehen (reptilia: sauria: gekkonidae). Amphibia-Reptilia 7:141

    Article  Google Scholar 

  • Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol 17:1055

    Article  Google Scholar 

  • Smith JM, Barnes WJP, Downie JR, Ruxton GD (2006) Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J Comp Physiol A 192:1193

    Article  Google Scholar 

  • Spolenak R, Gorb SN, Gao H, Arzt E (2005) Effects of contact shape on the scaling of biological attachments. Proc R Soc Lond A 461:305

    Article  Google Scholar 

  • Stork NE (1980a) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91

    Google Scholar 

  • Stork NE (1980b) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linnean Soc 68:173

    Article  Google Scholar 

  • Stork NE (1983) A comparison of the adhesive setae on the feet of lizards and arthropods. J Nat Hist 17:829

    Article  Google Scholar 

  • Tang T, Hui CY (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2:505

    Article  Google Scholar 

  • Varenberg M, Gorb SN (2008a) A beetle-inspired solution for underwater adhesion. J R Soc Interface 5:383

    Article  Google Scholar 

  • Varenberg M, Gorb SN (2008b) Close-up of mushroom-shaped fibrillar adhesive microstructure: contact element behaviour. J R Soc Interface 5:785

    Article  Google Scholar 

  • Varenberg M, Gorb SN (2008c) Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J R Soc Interface 4:721

    Article  Google Scholar 

  • Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269

    Article  Google Scholar 

  • Varenberg M, Murarash B, Kligermann Y, Gorb SN (2011) Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl Phys A Mater Sci Process 103:933

    Article  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765

    Article  Google Scholar 

  • Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb SN, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605

    Article  Google Scholar 

  • Walker G, Yulf AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool (Lond) 205:297

    Article  Google Scholar 

  • Wigglesworth VB (1987) How does a fly cling to the under surface of a glass sheet? J Exp Biol 129:373

    Google Scholar 

  • Wolff JO, Gorb SN (2011) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc London, Ser B 279:139

    Article  Google Scholar 

  • Wolff JO, Gorb SN (2012) Surface roughness effects on attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). J Exp Biol 215:179

    Article  Google Scholar 

  • Wolff JO, Gorb SN (2016) Attachment structures and adhesive secretions in arachnids. Springer, Berlin

    Book  Google Scholar 

  • Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 16041421:3799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav N. Gorb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Gorb, S.N., Heepe, L. (2017). Biological Fibrillar Adhesives: Functional Principles and Biomimetic Applications. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_54-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_54-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics