Skip to main content
Log in

Functional Morphology and Design Constraints of Smooth Adhesive Pads

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Smooth adhesive pads are found among the arthropods, amphibians (particularly tree frogs), and in some mammals. They are used for dynamic adhesion when an animal is climbing steep or overhanging smooth surfaces. There is a need for strong attachment to avoid falling and easy detachment to enable the animal to move. This article describes the morphology and physical properties of smooth adhesive pads, stressing how there is little variation in structure, within tree frogs at least, even among pads that have evolved independently. This is clear evidence of an optimum design; best adhesion occurs when there is a continuous, thin film of fluid between the pad and the surface. Smooth adhesive pads adhere by wet adhesion, the main force component being capillarity, produced by the air/liquid interface (meniscus) around the edge of each pad. Smooth adhesive pads also produce substantial friction forces, probably because of actual contact between the pad surface and substrate (tree frogs) or non-Newtonian properties of the secreted fluid (insects). This is possible because the fluid layer beneath the pad has an average thickness of only a few nanometers. The article also discusses the scaling of adhesive force with size and, finally, implications for biomimetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cartmill, in Functional Vertebrate Morphology, M. Hildebrand, D.M. Bramble, K.F. Liem, D.B. Wake, Eds., (Belknap Press, Cambridge, MA, 1985) pp. 73–88.

    Google Scholar 

  2. D.K. Riskin, M.B. Fenton, Can. J. Zool. 79, 2261 (2001).

    Article  Google Scholar 

  3. R. Santos, S. Gorb, V. Jamar, P. Flammang, J. Exp. Biol. 208, 2555 (2005).

    Article  Google Scholar 

  4. K. Autumn et al., Proc. Natl. Acad. Sci. USA 99, 12252 (2002).

    Article  CAS  Google Scholar 

  5. G. Walker, A. Yue, J. Ratcliffe, J. Zool., London 205, 297 (1985).

    Article  Google Scholar 

  6. S.N. Gorb, Proc. R. Soc. London, Ser. B 265, 747 (1998).

    Article  Google Scholar 

  7. R.G. Beutel, S.N. Gorb, J. Zool. Syst. Evol. Res. 39, 177 (2001).

    Article  Google Scholar 

  8. O. Breidbach, Microkosmos 69, 200 (1980).

    Google Scholar 

  9. H. Schliemann, Funkt. Biol. Med. 2, 169 (1983).

    Google Scholar 

  10. S. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  11. W. Federle, T. Endlein, Arthropod Struct. Dev. 33, 67 (2004).

    Article  Google Scholar 

  12. S.N. Gorb, Y. Jiao, M. Scherge, J. Comp. Physiol. A 267, 1239 (2000).

    CAS  Google Scholar 

  13. U. Welsch, V. Storch, W. Fuchs, Cell Tissue Res. 148, 407 (1974).

    Article  CAS  Google Scholar 

  14. D.M. Green, Can. J. Zool. 57, 2033 (1979).

    Article  Google Scholar 

  15. A. McAllister, L. Channing, S. Afr. J. Zool. 18, 110 (1983).

    Google Scholar 

  16. D.M. Green, P. Simon, Aust. J. Zool. 34, 135 (1986).

    Article  Google Scholar 

  17. G. Hanna, W.J.P. Barnes, J. Exp. Biol. 155, 103 (1991).

    Google Scholar 

  18. I. Hertwig, U. Sinsch, Copeia 1, 38 (1995).

    Article  Google Scholar 

  19. V. Mizuhira, J. Electron Microsc. (Tokyo) 53, 63 (2004).

    Article  Google Scholar 

  20. J.M. Smith, W.J.P. Barnes, J.R. Downie, G.D. Ruxton, J. Zool. 270, 372 (2006).

    Article  Google Scholar 

  21. W. Federle et al., J. R. Soc. Interface 3, 689 (2006).

    Article  CAS  Google Scholar 

  22. V.V. Ernst, Tissue Cell 5, 83 (1973).

    Article  CAS  Google Scholar 

  23. D.M. Green, P. Alberch, J. Morphol. 170, 273 (1981).

    Article  Google Scholar 

  24. P. Alberch, Evolution 35, 84 (1981).

    Google Scholar 

  25. H.I. Rosenberg, R. Rose, Can. J. Zool. 77, 233 (1999).

    Article  Google Scholar 

  26. S.N. Gorb, M. Scherge, Proc. R. Soc. London, Ser. B 267, 1239 (2000).

    Article  CAS  Google Scholar 

  27. Y. Jiao, S. Gorb, M. Scherge, J. Exp. Biol. 203, 1887 (2000).

    CAS  Google Scholar 

  28. P. Perez-Goodwyn et al., J. Comp. Physiol. A 192, 1233 (2006).

    Article  Google Scholar 

  29. W.J.P. Barnes, P. Perez-Goodwyn, S.N. Gorb, Comp. Biochem. Physiol. 141, S145 (2005).

    Google Scholar 

  30. S. Vogel, Comparative Biomechanics: Life’s Physical World (Princeton University Press, Princeton, NJ, 2003).

    Google Scholar 

  31. W. Federle, M. Riehle, A. Curtis, R. Full, Integr. Comp. Biol. 42, 1100 (2002).

    Article  Google Scholar 

  32. W. Vötsch et al., Insect Biochem. Mol. Biol. 32, 1605 (2002).

    Article  Google Scholar 

  33. J. Stefan, Sitzber. Akad. Wiss. Wien (Abt. II, Math.-Phys.) 69, 713 (1874).

    Google Scholar 

  34. J.J. Bickerman, The Science of Adhesive Joints (Academic Press, New York, 1968).

    Google Scholar 

  35. L.-Y. Zhu, IEEE Trans. Magn. 35, 2415 (1999).

    Article  Google Scholar 

  36. W.J.P. Barnes, C. Oines, J.M. Smith, J. Comp. Physiol. A 192, 1179 (2006).

    Article  Google Scholar 

  37. S.B. Emerson, D. Diehl, Biol. J. Linnean Soc. 32, 551 (1980).

    Google Scholar 

  38. J.M. Smith, W.J.P. Barnes, J.R. Downie, G.D. Ruxton, J. Comp. Physiol. A 192, 1193 (2006).

    Article  Google Scholar 

  39. W.J.P. Barnes, J. Platter, unpublished observations.

  40. E. Arzt, personal communication.

  41. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. London, Ser. A 324, 301 (1971).

    Article  CAS  Google Scholar 

  42. E. Arzt, S Gorb, R. Spolenak, Proc. Natl. Acad. Sci. USA, 100, 10603 (2003).

    Article  CAS  Google Scholar 

  43. K. Kendall, J. Phys. D: Appl. Phys. 8, 1449 (1975).

    Article  Google Scholar 

  44. J.M. Piau, G. Ravilly, C. Verdier, J. Polym. Sci. Pol. Phys. 43, 145 (2005).

    Article  CAS  Google Scholar 

  45. K. Autumn et al., J. Exp. Biol. 209, 3569 (2006).

    Article  CAS  Google Scholar 

  46. W. Federle, W. Baumgartner, B. Hölldobler, J. Exp. Biol. 207, 67 (2004).

    Article  Google Scholar 

  47. W. Federle, K. Rohrseitz, B. Hölldobler, J. Exp. Biol. 203, 505 (2000).

    CAS  Google Scholar 

  48. P. Drechsler, W. Federle, J. Comp. Physiol. A 192, 1213 (2006).

    Article  Google Scholar 

  49. W.J.P. Barnes, J. Comp. Physiol. A 192, 1165 (2006).

    Article  Google Scholar 

  50. K. Autumn, W. Hansen, J. Comp. Physiol. A 192, 1205 (2006).

    Article  Google Scholar 

  51. C.A. Dahlquist, in Treatise on Adhesion and Adhesives Vol. 2, R.L. Patrick, Ed. (Dekker, New York, 1969) pp. 219–260.

    Google Scholar 

  52. W. Federle et al., Oecologia 112, 217 (1997).

    Article  Google Scholar 

  53. W.J.P. Barnes, Tire Technol. Int., 42 (March 1999).

  54. W.J.P. Barnes, J. Smith, C. Oines, R. Mundl, Tire Technol. Int., 56 (December 2002).

  55. S.N. Gorb, in Biomimetics: Biologically Inspired Technologies, Y. Bar-Cohen, Ed. (CRC Press, Boca Raton, FL, 2006) pp. 381–397.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, W.J.P. Functional Morphology and Design Constraints of Smooth Adhesive Pads. MRS Bulletin 32, 479–485 (2007). https://doi.org/10.1557/mrs2007.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.81

Navigation