Skip to main content
Log in

Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Semiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shockley and H.J. Queisser, J. Appl. Phys. 32 (1961) p. 510.

    Article  CAS  Google Scholar 

  2. A.J. Nozik, Annu. Rev. Phys. Chem. 52 (2001) p. 193.

    Article  CAS  Google Scholar 

  3. R.T. Ross and A.J. Nozik, J. Appl. Phys. 53 (1982) p. 3813.

    Article  CAS  Google Scholar 

  4. D.S. Boudreaux, F. Williams, and A.J. Nozik, J. Appl. Phys. 51 (1980) p. 2158.

    Article  CAS  Google Scholar 

  5. P.T. Landsberg, H. Nussbaumer, and G. Willeke, J. Appl. Phys. 74 (1993) p. 1451.

    Article  CAS  Google Scholar 

  6. S. Kolodinski, J.H. Werner, T. Wittchen, and H.J. Queisser, Appl. Phys. Lett. 63 (1993) p. 2405.

    Article  CAS  Google Scholar 

  7. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, and A.L. Efros, Nano Lett. 5 (2005) p. 865.

    Article  CAS  Google Scholar 

  8. M.C. Hanna and A.J. Nozik, J. Appl. Phys. 100 074510 (2006).

    Article  CAS  Google Scholar 

  9. A. Luque and A. Martí, Phys. Rev. Lett. 78 (1997) p. 5014.

    Article  CAS  Google Scholar 

  10. A. Luque and A. Martí, Prog. Photovoltaics: Res. Appl. 9 (2001) p. 73.

    Article  CAS  Google Scholar 

  11. J. Bude and K. Hess, J. Appl. Phys. 72 (1992) p. 3554.

    Article  CAS  Google Scholar 

  12. H.K. Jung, K. Taniguchi, and C. Hamaguchi, J. Appl. Phys. 79 (1996) p. 2473.

    Article  CAS  Google Scholar 

  13. D. Harrison, R.A. Abram, and S. Brand, J. Appl. Phys. 85 (1999) p. 8186.

    Article  CAS  Google Scholar 

  14. O. Christensen, J. Appl. Phys. 47 (1976) p. 690.

    Article  Google Scholar 

  15. M. Wolf, R. Brendel, J.H. Werner, and H.J. Queisser, J. Appl. Phys. 83 (1998) p. 4213.

    Article  CAS  Google Scholar 

  16. R. Schaller and V. Klimov, Phys. Rev. Lett. 92 186601 (2004).

    Article  CAS  Google Scholar 

  17. J.E. Murphy, M.C. Beard, A.G. Norman, S.P. Ahrenkiel, J.C. Johnson, P. Yu, O.I. Micic, R.J. Ellingson, and A.J. Nozik, J. Am. Chem. Soc. 128 (2006) p. 3241.

    Article  CAS  Google Scholar 

  18. A. Shabaev, Al.L. Efros, and A.J. Nozik, Nano Lett. 6 (2006) p. 2856.

    Article  CAS  Google Scholar 

  19. R.D. Schaller, M. Sykora, J.M. Pietryga, and V.I. Klimov, Nano Lett. 6 (2006) p. 424.

    Article  CAS  Google Scholar 

  20. R.D. Schaller, M.A. Petruska, and V.I. Klimov, Appl. Phys. Lett. 87 253102 (2005).

    Article  CAS  Google Scholar 

  21. R.D. Schaller, V.M. Agranovich, and V.I. Klimov, Nature Phys. 1 (2005) p. 189.

    Article  CAS  Google Scholar 

  22. A. Franceschetti, J.M. An, and A. Zunger, Nano Lett. 6 (2006) p. 2191.

    Article  CAS  Google Scholar 

  23. A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 33 (2000) p. 269.

    Article  CAS  Google Scholar 

  24. J. Moser, P. Bonnote, and M. Grätzel, Coord. Chem. Rev. 171 (1998) p. 245.

    Article  Google Scholar 

  25. M. Grätzel, Prog. Photovoltaics 8 (2000) p. 171.

    Article  Google Scholar 

  26. A. Zaban, O.I. Micic, B.A. Gregg, and A.J. Nozik, Langmuir 14 (1998) p. 3153.

    Article  CAS  Google Scholar 

  27. R. Vogel and H. Weller, J. Phys. Chem. 98 (1994) p. 3183.

    Article  CAS  Google Scholar 

  28. H. Weller, Ber. Bunsen-Ges. Phys. Chem. 95 (1991) p. 1361.

    Article  CAS  Google Scholar 

  29. D. Liu and P.V. Kamat, J. Phys. Chem. 97 (1993) p. 10769.

    Article  CAS  Google Scholar 

  30. P. Hoyer and R. Könenkamp, Appl. Phys. Lett. 66 (1995) p. 349.

    Article  CAS  Google Scholar 

  31. N.C. Greenham, X. Peng, and A.P. Alivisatos, Phys. Rev. B 54 (1996) p. 17628.

    Article  CAS  Google Scholar 

  32. N.C. Greenham, X. Peng, and A.P. Alivisatos, “A CdSe Nanocrystal/MEH-PPV Polymer Composite Photovoltaic” in Future Generation Photovoltaic Technologies: First NREL Conf., edited by R. McConnell (AIP, 1997) p. 295.

  33. W.U. Huynh, X. Peng, and P. Alivisatos, Adv. Mater. 11 (1999) p. 923.

    Article  CAS  Google Scholar 

  34. A. Luque, A. Martí, and L. Cuadra, IEEE Trans. Electron Dev. 50 (2003) p. 447.

    Article  CAS  Google Scholar 

  35. A. Luque, A. Martí, and L. Cuadra, Physica E 14 (2002) p. 107.

    Article  Google Scholar 

  36. A. Luque, A. Martí, and L. Cuadra, IEEE Trans. Electron Dev. 48 (2001) p. 2118.

    Article  Google Scholar 

  37. A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382 (2006) p. 320.

    Article  CAS  Google Scholar 

  38. A. Martí, L. Cuadra, and A. Luque, in Proc. 28th IEEE Photovoltaics Specialists Conf. (IEEE, Piscataway, NJ, 2000) p. 940.

    Google Scholar 

  39. N.F. Mott, Rev. Mod. Phys. 40 (1968) p. 677.

    Article  CAS  Google Scholar 

  40. A.J. Nozik, in The Next Generation Photo-voltaics: High Efficiency through Full Spectrum Utilization, edited by A. Martí, A. Luque (Institute of Physics, Bristol, UK, 2003) p. 196.

    Google Scholar 

  41. U. Woggon, in Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics (Springer - Verlag, Heidelberg, 1996) p. 115.

    Google Scholar 

  42. K. Mukai and M. Sugawara, in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by M. Sugawara (Academic Press, San Diego, 1999) p. 209.

    Google Scholar 

  43. A. Martí, L. Cuadra, and A. Luque, IEEE Trans. Electron Dev. 48 (2001) p. 2394.

    Article  Google Scholar 

  44. Y. Nakata, Y. Sugiyama, and M. Sugawara, in Self-Assembled InGaAs/GaAs Quantum Dots, Semiconductors and Semimetals, Vol. 60, edited by M. Sugawara (Academic Press, San Diego, 1999) p. 117.

    Google Scholar 

  45. A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L.J. Caballero, L. Cuadra, and J.L. Balenzategui, Appl. Phys. Lett. 87 083505 (2005).

    Article  CAS  Google Scholar 

  46. A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C.R. Stanley, C. Farmer, and P. Díaz, J. Appl. Phys. 99 094503 (2006).

    Article  CAS  Google Scholar 

  47. A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, and A. McKee, J. Appl. Phys. 96 (2004) p. 903.

    Article  CAS  Google Scholar 

  48. A.J. Nozik, Physica E 14 (2002) p. 115.

    Article  CAS  Google Scholar 

  49. R.J. Ellingson, J.L. Blackburn, M. Beard, O.I. Micic, P. Yu, J. Murphy, and A.J. Nozik, in Proc. ECS Meet., edited by T. Lian, K. Murakoshi, and G. Rumbles (San Antonio, 2004).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, A., Martí, A. & Nozik, A.J. Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands. MRS Bulletin 32, 236–241 (2007). https://doi.org/10.1557/mrs2007.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.28

Navigation