Skip to main content

Increasing Efficiency with Multiple Exciton Generation

  • Chapter
  • First Online:
Quantum Dot Solar Cells

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 15))

Abstract

In a conventional solar cell the energy of an absorbed photon in excess of the band gap is lost as heat as the photo-generated charges cool rapidly to the band edge; for a silicon-based cell under standard insolation this loss is equivalent to 47 % of incident power. However, in colloidal quantum dots an alternative process can become significant—multiple exciton generation (MEG). Here, immediately after the absorption of a photon photo-generated carriers can instead use this excess energy to produce additional electron–hole pairs, which can contribute to the photocurrent and thereby increase the efficiency of a solar cell. In this chapter, this phenomenon will be introduced and its potential for increasing the efficiency of quantum dot solar cells discussed. MEG was first investigated spectroscopically and the challenging techniques used will be described. Progress since the first demonstration of MEG in 2004 will then be reviewed, including the controversy over quantum yields and its resolution. The recent demonstration of devices benefiting from MEG will be detailed. Finally, several possible future directions for research will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beard, M.C., Ellingson, R.J.: Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photon. Rev. 2(5), 377–399 (2008)

    Article  Google Scholar 

  2. Shah, J.: Hot electrons and phonons under high intensity photoexcitation of semiconductors. Solid State Electron. 21(1), 43–50 (1978)

    Article  ADS  Google Scholar 

  3. Christensen, O.: Quantum efficiency of the internal photoelectric effect in silicon and germanium. J. Appl. Phys. 47(2), 689–695 (1976)

    Article  ADS  Google Scholar 

  4. Geist, J., Gardner, J.L., Wilkinson, F.J.: Surface-field-induced feature in the quantum yield of silicon near 3.5 eV. Phys. Rev. B 42(2), 1262–1267 (1990)

    Article  ADS  Google Scholar 

  5. Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100(7), 074510 (2006)

    Article  ADS  Google Scholar 

  6. Klimov, V.I.: Detailed-balance power conversion limits of nanocrystal-quantum-dot solar cells in the presence of carrier multiplication. Appl. Phys. Lett. 89(12), 123118 (2006)

    Article  ADS  Google Scholar 

  7. Takeda, Y., Motohiro, T.: Requisites to realize high conversion efficiency of solar cells utilizing carrier multiplication. Solar Energy Mater. Solar Cells 94(8), 1399–1405 (2010)

    Article  Google Scholar 

  8. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  9. Klimov, V.I. (ed.): Semiconductor and Metal Nanocrystals, p. 484. Marcel Dekker, New York (2004)

    Google Scholar 

  10. Kang, I., Wise, F.W.: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14(7), 1632–1646 (1997)

    Article  ADS  Google Scholar 

  11. Binks, D.J.: Multiple exciton generation in nanocrystal quantum dots – controversy, current status and future prospects. Phys. Chem. Chem. Phys. 13(28), 12693–12704 (2011)

    Article  Google Scholar 

  12. Klimov, V., et al.: Single-exciton optical gain in semiconductor nanocrystals. Nature 447(7143), 441–446 (2007)

    Article  ADS  Google Scholar 

  13. Klimov, V.I., Mikhailovsky, A.A., McBranch, D.W., Leatherdale, C.A., Bawendi, M.G.: Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011 (2000)

    Article  ADS  Google Scholar 

  14. Crooker, S.A., et al.: Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 82(17), 2793–2795 (2003)

    Article  ADS  Google Scholar 

  15. Schaller, R.D., Klimov, V.I.: High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92(18), 186601 (2004)

    Article  ADS  Google Scholar 

  16. Ji, M.B., et al.: Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation. Nano Lett. 9(3), 1217–1222 (2009)

    Article  ADS  Google Scholar 

  17. Pijpers, J.J.H., et al.: Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nat. Phys. 5(11), 811–814 (2009)

    Article  Google Scholar 

  18. Hardman, S.J.O., et al.: Electronic and surface properties of PbS nanoparticles exhibiting efficient multiple exciton generation. Phys. Chem. Chem. Phys. 13(45), 20275–20283 (2011)

    Article  Google Scholar 

  19. Ben-Lulu, M., et al.: On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots. Nano Lett. 8(4), 1207–1211 (2008)

    Article  ADS  Google Scholar 

  20. Cadirci, M., et al.: Ultrafast exciton dynamics in InAs/ZnSe nanocrystal quantum dots. Phys. Chem. Chem. Phys. 14(43), 15166–15172 (2012)

    Article  Google Scholar 

  21. Schaller, R.D., et al.: High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110(50), 25332–25338 (2006)

    Article  Google Scholar 

  22. Nair, G., et al.: Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 78(12), 125325 (2008)

    Article  ADS  Google Scholar 

  23. Nair, G., Bawendi, M.G.: Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 76(8), 081304 (2007)

    Article  ADS  Google Scholar 

  24. McGuire, J.A., et al.: Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 10(6), 2049–2057 (2010)

    Article  ADS  Google Scholar 

  25. Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3(12), 696–705 (2009)

    Article  ADS  Google Scholar 

  26. Koc, S.: The quantum efficiency of the photo-electric effect in germanium for the 0.3–2 μ wavelength region. Czechoslovak J. Phys. 7(1), 91 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  27. Smith, A., Dutton, D.: Behavior of lead sulfide photocells in the ultraviolet. J. Opt. Soc. Am. 48(12), 1007–1009 (1958)

    Article  ADS  Google Scholar 

  28. Wolf, M., et al.: Solar cell efficiency and carrier multiplication in Si[sub 1 − x]Ge[sub x] alloys. J. Appl. Phys. 83(8), 4213–4221 (1998)

    Article  ADS  Google Scholar 

  29. Nozik, A.J.: Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52(1), 193–231 (2001)

    Article  ADS  Google Scholar 

  30. Ellingson, R.J., et al.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5(5), 865–871 (2005)

    Article  ADS  Google Scholar 

  31. Murphy, J.E., et al.: PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128(10), 3241–3247 (2006)

    Article  Google Scholar 

  32. Schaller, R.D., Petruska, M.A., Klimov, V.I.: Effect of electronic structure on carrier multiplication efficiency: comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 87(25), 253102–253103 (2005)

    Article  ADS  Google Scholar 

  33. Schaller, R.D., Pietryga, J.M., Klimov, V.I.: Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 7(11), 3469–3476 (2007)

    Article  ADS  Google Scholar 

  34. Beard, M.C., et al.: Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007)

    Article  ADS  Google Scholar 

  35. Pijpers, J.J.H., et al.: Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots. J. Phys. Chem. C 112(12), 4783–4784 (2008)

    Article  Google Scholar 

  36. Midgett, A.G., et al.: Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots. J. Phys. Chem. C 114(41), 17486–17500 (2010)

    Article  Google Scholar 

  37. McGuire, J.A., et al.: New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41(12), 1810–1819 (2008)

    Article  Google Scholar 

  38. Stubbs, S.K., et al.: Efficient carrier multiplication in InP nanoparticles. Phys. Rev. B 81(8), 081303 (2010)

    Article  ADS  Google Scholar 

  39. Gachet, D., et al.: An upper bound to carrier multiplication efficiency in type II colloidal quantum dots. Nano Lett. 10(1), 164–170 (2009)

    Article  ADS  Google Scholar 

  40. Tyagi, P., Kambhampati, P.: False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping. J. Chem. Phys. 134(9), 10 (2011)

    Article  Google Scholar 

  41. Tisdale, W.A., et al.: Hot-electron transfer from semiconductor nanocrystals. Science 328(5985), 1543–1547 (2010)

    Article  ADS  Google Scholar 

  42. Sambur, J.B., Novet, T., Parkinson, B.A.: Multiple exciton collection in a sensitized photovoltaic system. Science 330(6000), 63–66 (2010)

    Article  ADS  Google Scholar 

  43. Semonin, O.E., et al.: Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334(6062), 1530–1533 (2011)

    Article  ADS  Google Scholar 

  44. Peter, L.M., et al.: Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem. Commun. (10), 1030–1031 (2002)

    Google Scholar 

  45. Kongkanand, A., et al.: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130(12), 4007–4015 (2008)

    Article  Google Scholar 

  46. Plass, R., et al.: Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106(31), 7578–7580 (2002)

    Article  Google Scholar 

  47. Zhu, H., Lian, T.: Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy Environ. Sci. 5(11), 9406–9418 (2012)

    Article  Google Scholar 

  48. Ning, Z.J., et al.: Wave-function engineering of CdSe/CdS core/shell quantum dots for enhanced electron transfer to a TiO2 substrate. J. Phys. Chem. C 114(35), 15184–15189 (2010)

    Article  Google Scholar 

  49. Wang, C.H., et al.: Recombination dynamics in CdTe/CdSe type-II quantum dots. Nanotechnology 19(11), 15702.1–15702.6 (2008)

    Article  Google Scholar 

  50. Garcia-Santamaria, F., et al.: Breakdown of volume scaling in Auger recombination in CdSe/CdS heteronanocrystals: the role of the core–shell interface. Nano Lett. 11(2), 687–693 (2011)

    Article  ADS  Google Scholar 

  51. Pandey, A., Guyot-Sionnest, P.: Slow electron cooling in colloidal quantum dots. Science 322(5903), 929–932 (2008)

    Article  ADS  Google Scholar 

  52. Piryatinski, A., et al.: Effect of quantum and dielectric confinement on the exciton–exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 7(1), 108–115 (2006)

    Article  ADS  Google Scholar 

  53. Deutsch, Z., et al.: Energetics and dynamics of exciton–exciton interactions in compound colloidal semiconductor quantum dots. Phys. Chem. Chem. Phys. 13(8), 3210–3219 (2011)

    Article  Google Scholar 

  54. Sitt, A., et al.: Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. Nano Lett. 9(10), 3470–3476 (2009)

    Article  ADS  Google Scholar 

  55. Avidan, A., Deutsch, Z., Oron, D.: Interactions of bound excitons in doped core/shell quantum dot heterostructures. Phys. Rev. B 82(16), 6 (2010)

    Article  Google Scholar 

  56. Im, S.H., et al.: Efficient HgTe colloidal quantum dot-sensitized near-infrared photovoltaic cells. Nanoscale 4(5), 1581–1584 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  57. Allan, G., Delerue, C.: Optimization of carrier multiplication for more efficient solar cells: the case of Sn quantum dots. ACS Nano 5(9), 7318–7323 (2011)

    Article  Google Scholar 

  58. Berger, L.I.: Properties of semiconductors. In: Lide, D.R. (ed.) Handbook of Physics and Chemistry, p. 90. CRC, Boca Raton (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Binks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McElroy, N., Cadirci, M., Al-Otaify, A., Page, R., Binks, D.J. (2014). Increasing Efficiency with Multiple Exciton Generation. In: Wu, J., Wang, Z. (eds) Quantum Dot Solar Cells. Lecture Notes in Nanoscale Science and Technology, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8148-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8148-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8147-8

  • Online ISBN: 978-1-4614-8148-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics