Skip to main content
Log in

Coupled Quantum–Atomistic and Quantum–Continuum Mechanics Methods in Materials Research

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The interface of quantum mechanics methods with classical atomistic simulation techniques, such as molecular dynamics and Monte Carlo, continues to be an area of considerable promise and interest. Such coupled quantum–atomistic approaches have been developed and employed, for example, to gain a comprehensive understanding of the energetics, kinetics, and dynamics of chemical processes involving surfaces and interfaces of hard materials. More recently, it has become possible to directly couple first-principles electronic structure techniques to continuum solid mechanics, either on the fly with feedback between length scales or by information passing between length scales. We discuss, with tutorial examples, the merging of quantum mechanics with molecular dynamics and Monte Carlo simulations, as well as quantum–continuum coupled techniques. We illustrate the opportunities offered by incorporation of information from quantum mechanics (reducing assumptions in higher length-scale models) and outline the challenges associated with achieving full predictive capability for the behavior of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  2. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  3. T.J.R. Hughes, The Finite Element Method (Prentice-Hall, Englewood Cliffs, N.J., 1987).

  4. A. Needleman, Acta Mater. 48, 105 (2000).

  5. L.P. Kubin, G. Canova, Scr. Metall. Mater. 27, 957 (1992).

  6. H.M. Zbib, T. Diaz de la Rubia, V. V. Bulatov, Int. J. Mech. Sci. 124, 78 (2002).

  7. G. Lu, E. Kaxiras, in Handbook of Theoretical and Computational Nanoscience, M. Rieth, W. Schommers, Eds., vol. X, chap. 22 (American Scientific, 2005).

  8. I.M. Robertson, D.H. Lassila, B. Devincre, R. Phillips, Eds., Multiscale Phenomena in Materials—Experiments and Modeling (Mater. Res. Soc. Proc. 578, Materials Research Society, Warrendale, PA, 2000).

  9. L.P. Kubin, R.L. Selinger, J.L. Bassani, K. Cho, Eds., Multiscale Modeling of Materials—2000 (Mater. Res. Soc. Proc. 653, Materials Research Society, Warrendale, PA, 2001).

  10. X.-P. Xu, A. Needleman, J. Mech. Phys. Solids 42, 1397 (1994).

  11. G.T. Camacho, M. Ortiz, Int. J. Solids Struct. 33, 2899 (1996).

  12. M.L. Falk, A. Needleman, J.R. Rice, J. Phys. IV 11, 43 (2001).

  13. J.P. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, 1982).

  14. W. Cai, A. Arsenalis, C.R. Weinberger, V.V. Bulatov, J. Mech. Phys. Solids 54, 561 (2006).

  15. E.B. Tadmor, U.V. Waghmare, G.S. Smith, E. Kaxiras, Acta Mater. 50, 2989 (2002).

  16. S. Serebrinsky, E.A. Carter, M. Ortiz, J. Mech. Phys. Solids 54, 2403 (2004).

  17. D.E. Jiang, E.A. Carter, Acta Mater. 52, 4801 (2004).

  18. A. van der Wen, G. Ceder, Phys. Rev. B 67, 060101 (2003).

  19. O. Nguyen, M. Ortiz, J. Mech. Phys. Solids 50, 1727 (2002).

  20. R.L. Hayes, M. Ortiz, E.A. Carter, Phys. Rev. B 69, 172104 (2004).

  21. M. Ortiz, R. Phillips, Adv. Appl. Mech. 36, 1 (1999).

  22. F. Abraham, J. Broughton, N. Bernstein, E. Kaxiras, Comput. Phys. 12, 538 (1998).

  23. J. Broughton, F. Abraham, N. Bernstein, E. Kaxiras, Phys. Rev. B 60, 2391 (1999).

  24. G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B 73, 024108 (2006).

  25. W.D. Nix, Metall. Trans. A 20A, 2217 (1989).

  26. A.P. Sutton, J.B. Pethica, J. Phys. Condens. Matter 2, 5317 (1990).

  27. M. Fago, R.L. Hayes, E.A. Carter, M. Ortiz, Phys. Rev. B 70, 100102 (2004).

  28. R.L. Hayes. M. Fago, M. Ortiz, E.A. Carter, Multiscale Model. Simul. 4, 359 (2005).

  29. R.L. Hayes, G. Ho, M. Ortiz, E.A. Carter, Philos. Mag. 86, 2343 (2006).

  30. S. Watson, E.A. Carter, Comput. Phys. Commun. 128, 67 (2000).

  31. B. Zhou, Y. Wang, E.A. Carter, Phys. Rev. B 69, 155329 (2004).

  32. S. Watson, B.J. Wesson, E.A. Carter, P.A. Madden, Europhys. Lett. 41, 37 (1998).

  33. Y.A. Wang, E.A. Carter, in Theoretical Methods in Condensed Phase Chemistry, in the series Progress in Theoretical Chemistry and Physics, S. Schwartz, Ed. (Kluwer, Dordrecht, 2000), pp. 117–184.

  34. C. Woodward, S.I. Rao, Phys. Rev. Lett. 88, 216402 (2002).

  35. C. Woodward, Mater. Sci. Eng. A 400, 59 (2005).

  36. D.R. Trinkle, C. Woodward, Science 310, 1665 (2005).

  37. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

  38. M. Born, J.R. Oppenheimer, Annu. Phys. 84, 457 (1927).

  39. R.N. Barnett, U. Landman, A. Nitzan, G. Rajagopal, J. Chem. Phys. 94, 608 (1991).

  40. D.A. Gibson, I.V. Ionova, E.A. Carter, Chem. Phys. Lett. 240, 261 (1995).

  41. D. Marx, J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, J. Grotendorst, Ed. (John von Neumann Institute for Computing, Jülich, 2000), pp. 329–477.

  42. M.R. Radeke, E.A. Carter, Annu. Rev. Phys. Chem. 48, 243 (1997).

  43. J.S. Tse, Annu. Rev. Phys. Chem. 53, 249 (2002).

  44. P.C. Weakliem, C.J. Wu, E.A. Carter, Phys. Rev. Lett. 69, 200 (1992).

  45. P.C. Weakliem, E.A. Carter, J. Chem. Phys. 98, 737 (1993).

  46. P.A. Madden, R. Heaton, A. Aguado, S. Jahn, J. Mol. Struct.: THEOCHEM 771, 9 (2006).

  47. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001).

  48. A.C.T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W.A. Goddard, J. Phys. Chem A 107, 3803 (2003).

  49. M.J. Buehler, A.C.T. van Duin, W.A. Goddard, Phys. Rev. Lett. 96, 095505 (2006).

  50. G. Csányi, T. Albaret, M.C. Payne, A. De Vita, Phys. Rev. Lett. 93, 175503 (2004).

  51. G. Csányi, G. Moras, J.R. Kermonde, M.C. Payne, in Top. Appl. Phys. 104, D.A. Drabold, S.K. Estreicher, Eds. (Springer, Berlin, 2007), pp. 193–212.

  52. N. Govind, Y.A. Wang, E.A. Carter, J. Chem. Phys. 110, 7677 (1999).

  53. A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975).

  54. K.A. Fichthorn, W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991).

  55. K. Reuter, M. Scheffler, Phys. Rev. B 73, 045433 (2006).

  56. K. Reuter, C. Stampfl, M. Scheffler, in Handbook of Materials Modeling, Part A: Methods, S. Yip, Ed. (Springer, Berlin Heidelberg, 2005), pp. 149–194.

  57. M.R. Radeke, E.A. Carter, Phys. Rev. B 54, 11803 (1996).

  58. A.F. Voter, F. Montalenti, T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002).

  59. P.J. Feibelman, Phys. Rev. Lett. 65, 729 (1990).

  60. G. Henkelman, H. Jónsson, Phys. Rev. Lett. 90, 116101 (2003).

  61. G. Henkelman, H. Jónsson, J. Chem. Phys. 121, 9776 (2004).

  62. A. Karim, A.N. Al-Rawi, A. Kara, T.S. Rahman, O. Trushin, T. Ala-Nissila, Phys. Rev. B 73, 165411 (2006).

  63. Q. Cui, H. Guo, M. Karplus, J. Chem. Phys. 117, 5617 (2002).

  64. J. Gao, D.G. Truhlar, Annu. Rev. Phys. Chem. 53, 467 (2002).

    Google Scholar 

  65. H. Lin, D. Truhlar, Theo. Chem. Acc. 117, 185 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasubramaniam, A., Carter, E.A. Coupled Quantum–Atomistic and Quantum–Continuum Mechanics Methods in Materials Research. MRS Bulletin 32, 913–918 (2007). https://doi.org/10.1557/mrs2007.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.188

Navigation