Skip to main content
Log in

Carbon-Based Membranes

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Inorganic carbon-based membranes for gas separation comprise materials that are fabricated through pyrolysis of a precursor material (often a synthetic polymer), and the more recently discovered carbon nanotubes. Fabrication, assembly into different architectures, and mechanism of operation are summarized for precursor-based carbon membranes, with a focus on selective surface flow and molecular sieving. Only preliminary work on carbon nanotube-based membranes for gas separation has been published. Their unusual transport properties, however, promise their use in gas separation in the future. In light of this application, structural properties and results relating to flow through these tubular structures are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Freemantle, Chem. Eng. News (October 3, 2005) p. 49.

  2. A.F. Ismail and L.I.B. David, J. Membr. Sci. 193 (2001) p. 1.

    Google Scholar 

  3. S.M. Saufi and A.F. Ismail, Carbon 42 (2004) p. 241.

    Google Scholar 

  4. S. Iijima, Nature 354 (1991) p. 56.

    Google Scholar 

  5. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Klang, D.S. Bethune, and M.J. Heben, Nature 386 (1997) p. 377.

    Google Scholar 

  6. G.A. Sznejer, I. Efremenko, and M. Sheintuch, AIChE J. 50 (2004) p. 596.

    Google Scholar 

  7. A.B. Fuertes and T.A. Centeno, J. Membr. Sci. 144 (1998) p. 105.

    Google Scholar 

  8. H. Hatori, H. Takagi, and Y. Yamada, Carbon 42 (2004) p. 1169.

    Google Scholar 

  9. A.M. Rao and S. Sircar, Gas Sep. Purif. 7 (1993) p. 279.

    Google Scholar 

  10. A.M. Rao and S. Sircar, J. Membr. Sci. 85 (1993) p. 253.

    Google Scholar 

  11. A.M. Viera-Linhares and N.A. Seaton, Chem. Eng. Sci. 58 (2003) p. 4129.

    Google Scholar 

  12. S. Sircar, W.E. Waldron, M.B. Rao, and M. Anand, Sep. Purif. Technol. 17 (1999).

  13. A.M. Viera-Linhares and N.A. Seaton, Chem. Eng. Sci. 58 (2003) p. 5251.

    Google Scholar 

  14. S. Villar-Rodil, R. Denoyel, J. Rouquerol, A. Martínez-Alonso, and J.M.D. Tascón, Chem. Mater. 14 (2002) p. 4328.

    Google Scholar 

  15. T.V. Choudhary, C. Sivadinarayana, and D.W. Goodman, Chem. Eng. J. 93 (2003) p. 69.

    Google Scholar 

  16. R.F. Service, Science 290 (2000) p. 246.

    Google Scholar 

  17. T.W. Odom, J.-L. Huang, P. Kim, and C.M. Lieber, Nature 391 (1998) p. 62.

    Google Scholar 

  18. J.W.G. Wildöer, L.C. Venema, A.C. Rinzler, R.E. Smalley, and C. Dekker, Nature 391 (1998) p. 59.

    Google Scholar 

  19. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley, Science 297 (2002) p. 593.

    Google Scholar 

  20. C.A. Dyke and J.M. Tour, Chem. Eur. J. 10 (2004) p. 812.

    Google Scholar 

  21. K.A. Williams and P.C. Eklund, Chem. Phys. Lett. 320 (2000) p. 352.

    Google Scholar 

  22. M.S. Dresselhaus, K.A. Williams, and P.C. Eklund, Mat. Res. Bull. 24 (1999) p. 45.

    Google Scholar 

  23. S. Hynek, W. Fuller, and J. Bentley, Int. J. Hydrogen Energy 22 (1997) p. 601.

    Google Scholar 

  24. H.-M. Cheng, Q.-H. Yang, and C. Liu, Carbon 39 (2000) p. 1447.

    Google Scholar 

  25. R.G. Ding, G.Q. Lu, Z.F. Yan, and M.A. Wilson, J. Nanosci. Nanotechnol. 1 (2001) p. 7.

    Google Scholar 

  26. L. Schlapbach and A. Züttel, Nature 414 (2001) p. 353.

    Google Scholar 

  27. L. Zhou, Ren. Sust. Energy Rev. 9 (2005) p. 395.

    Google Scholar 

  28. A. Centrone, L. Brambilla, and G. Zerbi, Phys. Rev. B 71 245406 (2005).

    Google Scholar 

  29. I. Efremenko and M. Sheintuch, Langmuir 21 (2005) p. 6286.

    Google Scholar 

  30. A. Lan and A. Mukasyan, J. Phys. Chem. B 109 (2005) p. 16011.

    Google Scholar 

  31. B. Panella, M. Hirscher, and S. Roth, Carbon 43 (2005) p. 2209.

    Google Scholar 

  32. M. Rzepka, E. Bauer, G. Reichenauer, T. Schliermann, B. Bernhardt, K. Bohmhammel, E. Henneberg, U. Knoll, H.-E. Maneck, and W. Braue, J. Phys. Chem. B 109 (2005) p. 14979.

    Google Scholar 

  33. G. Hummer, J.C. Rasaiah, and J.P. Noworyta, Nature 414 (2001) p. 188.

    Google Scholar 

  34. K. Koga, G.T. Gao, H. Tanaka, and X.C. Zeng, Nature 412 (2001) p. 802.

    Google Scholar 

  35. M. Bienfait, B. Asmussen, M. Johnson, and P. Zeppenfeld, Surf. Sci. 460 (2000) p. 243.

    Google Scholar 

  36. L. Sun and R.M. Crooks, J. Braz. Chem. Soc. 122 (2000) p. 12340.

    Google Scholar 

  37. Q. Wang, S.R. Challa, D.S. Sholl, and J.K. Johnson, Phys. Rev. Lett. 82 (1999) p. 956.

    Google Scholar 

  38. T.D. Power, A.I. Skoulidas, and D.S. Sholl, J. Am. Chem. Soc. 124 (2002) p. 1858.

    Google Scholar 

  39. S.M. Cooper, B.A. Cruden, M. Meyyappan, R. Raju, and S. Roy, Nano Lett. 4 (2004) p. 377.

    Google Scholar 

  40. A.I. Skoulidas, D.M. Ackerman, J.K. Johnson, and D.S. Sholl, Phys. Rev. Lett. 89 185901 (2002).

    Google Scholar 

  41. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, and O. Bakajin, Science 312 (2006) p. 1034.

    Google Scholar 

  42. M. Majumder, N. Chopra, R. Andrews, and B.J. Hinds, Nature 438 (2005) p. 44.

    Google Scholar 

  43. J.K. Holt, A. Noy, T. Huser, D. Eaglesham, and O. Bakajin, Nano Lett. 4 (2004) p. 2245.

    Google Scholar 

  44. Y. Ren and D.L. Price, Appl. Phys. Lett. 79 (2001) p. 3684.

    Google Scholar 

  45. S.A. Miller, V.Y. Young, and C.R. Martin, J. Am. Chem. Soc. 123 (2001).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietraß, T. Carbon-Based Membranes. MRS Bulletin 31, 765–769 (2006). https://doi.org/10.1557/mrs2006.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.190

Keywords

Navigation