Skip to main content
Log in

Microporous Silica and Zeolite Membranes for Hydrogen Purification

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Microporous amorphous silica and zeolite membranes are made as thin films on a multilayer porous support. The membranes have a network of connected micropores with ∼0.5–nm diameters. Net transport of small molecules on this network occurs under the driving force of a gradient in chemical potential. Favorable combinations of sorption selectivity and diffusion mobility in the membrane materials lead to high H2 fluxes and good selectivity with respect to other gases. The membranes show potential for application in H2 separation under harsh conditions. Amorphous silica membranes show very high H2 fluxes because they can be made very thin; silicalite-type zeolite membranes are expected to have a better operational stability. To make the membranes a viable option, improvements are needed in reducing membrane defects and manufacturing costs and enhancing reproducibility and operational stability. This article summarizes the state of the art, provides relevant definitions, and outlines the base design and long-term specifications of viable supported membrane structures. This is followed by an overview of transport properties, synthesis, and operational stability of the membrane and the supporting structures. Directions for future research programs are provided by demonstrating how the selection of the actual membrane composition and supporting structure can be derived from an application-based design. The success of such a design depends critically on fundamental studies of membrane transport, strength, and operational stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IZA Structure Commission Web site, “Database of zeolite structures,” http://www.izastructure.org/databases (accessed August 2006).

  2. D. Casanave, P. Ciavarella, K. Fiaty, and J.-A. Dalmon, Chem. Eng. Sci. 54 (1999) p. 2807.

    Google Scholar 

  3. Y.S. Lin, I. Kumakiri, B.N. Nair, and H. Alsyouri, Separ. Purif. Methods 31 (2) (2002) p. 229.

    Google Scholar 

  4. H. Verweij, J. Mater. Sci. 38 (23) (2003) p. 4677.

    Google Scholar 

  5. W.J. Koros, Y.H. Ma, and T. Shimidzu, Pure Appl. Chem. 68 (1996) p. 1479.

    Google Scholar 

  6. Y.S. Lin, Separ. Purif. Technol. 25 (2001) p. 39.

    Google Scholar 

  7. Z.P. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaoti, A.M. Amat, E. Kokkoli, O. Terasaki, R.W. Thompson, M. Tsapatsis, and D.G. Vlachos, Science 300 (2003) p. 456.

    Google Scholar 

  8. C.Y. Tsai, S.Y. Tam, Y.F. Lu, and C.J. Brinker, J. Membr. Sci. 169 (2) (2000) p. 255.

    Google Scholar 

  9. D. Hoenicke and E. Dietzsch, in Handbook of Porous Solids, edited by F. Schueth, K.S.W. Sing, and J. Weitkamp (Wiley, Weinheim, Germany, 2002) p. 1395.

    Google Scholar 

  10. C.J.M. van Rijn, W. Nijdam, S. Kuiper, G.J. Veldhuis, H.A.G.M. van Wolferen, and M.C. Elwenspoek, J. Micromech. Microeng. 9 (1999) p. 170.

    Google Scholar 

  11. N.E. Benes, H.J.M. Bouwmeester, and H. Verweij, Chem. Eng. Sci. 57 (14) (2002) p. 2673.

    Google Scholar 

  12. J. Dong, Y.S. Lin, and W. Liu, AIChE J. 46 (2000) p. 1957.

    Google Scholar 

  13. R.M. de Vos and H. Verweij, J. Membr. Sci. 143 (1) (1998) p. 37.

    Google Scholar 

  14. J.C. Diniz da Costa, G.Q. Lua, V. Rudolph, and Y.S. Lin, J. Membr. Sci. 198 (1) (2002) p. 9.

    Google Scholar 

  15. D. Lee and S.T. Oyama, J. Membr. Sci. 210 (2) (2002) p. 291.

    Google Scholar 

  16. Y.S. Lin and A.J. Burggraaf, J. Membr. Sci. 79 (1) (1993) p. 65.

    Google Scholar 

  17. E.A. Mason and A.P. Malinauskas, Gas Transport in Porous Media: The Dusty Gas Model (Elsevier, 1983).

  18. N.E. Benes, R. Verzijl, and H. Verweij, Comput. Chem. Eng. 23 (1999) p. 975.

    Google Scholar 

  19. M. Tsapatsis and G. Gavalas, J. Membr. Sci. 87 (1994) p. 281.

    Google Scholar 

  20. M. Nomura, K. Ono, S. Gopalakrishnan, T. Sugawara, and S. Nakao, J. Membr. Sci. 251 (1–2) p. 151.

  21. R.M. de Vos, W.F. Maier, and H. Verweij, J. Membr. Sci. 158 (2) (1999) p. 277.

    Google Scholar 

  22. Y. Lu, G. Cao, R.P. Kale, S. Prabakar, G.P. Lopez, and C.J. Brinker, Chem. Mater. 11 (1999) p. 1223.

    Google Scholar 

  23. M.C. Duke, J.C. Diniz da Costa, G.Q. Lua, M. Petch, and P. Gray, J. Membr. Sci. 241 (2) (2004) p. 325.

    Google Scholar 

  24. K. Kusakabe, F. Shibao, G. Zhao, K.-I. Sotowa, K. Watanabe, and T. Saito, J. Membr. Sci. 215 (1–2) (2003) p. 321.

    Google Scholar 

  25. Y. Iwamoto, K. Sato, T. Kato, T. Inada, and Y. Kubo, J. Eur. Ceram. Soc. 25 (2–3) (2005) p. 257.

    Google Scholar 

  26. M. Nomura, T. Yamaguchi, and S. Nakao, Ind. Eng. Chem. Res. 36 (10) (1997) p. 4217.

    Google Scholar 

  27. B.A. McCool and W.J. DeSisto, Ind. Eng. Chem. Res. 43 (2004) p. 2478.

    Google Scholar 

  28. W.C. Wong, L.T.Y. Au, C. Tellez Ariso, and K.L. Yeung, J. Membr. Sci. 191 (2001) p. 143.

    Google Scholar 

  29. J. Dong and Y.S. Lin, Ind. Eng. Chem. Res. 37 (1998) p. 2404.

    Google Scholar 

  30. M.C. Lovallo, A. Gouzinis, and M. Tsapatsis, AIChE J. 44 (1996) p. 1903.

    Google Scholar 

  31. M. Tsapatsis, M.C. Lovallo, T. Okubo, M. E. Davis, and M. Sadakata, Chem. Mater. 7 (1995) p. 1734.

    Google Scholar 

  32. M. Pan and Y.S. Lin, Microporous Mesoporous Mater. 43 (2001) p. 319.

    Google Scholar 

  33. W. Yuan, Y.S. Lin, and W.S. Yang, J. Am. Chem. Soc. 126 (15) (2004) p. 4776.

    Google Scholar 

  34. J. Dong, Y.S. Lin, M.Z.C. Hu, R.A. Peascoe, and E.A. Payzant, Microporous Mesoporous Mater. 34 (2000) p. 241.

    Google Scholar 

  35. T.A. Peters, J. Fontalvo, M.A.G. Vorstman, N.E. Benes, R.A. van Dam, Z.A.E.P. Vroon, E.L.J. van Soest-Vercammen, and J.T.F. Keurentjes, J. Membr. Sci. 248 (1–2) (2005) p. 73.

    Google Scholar 

  36. M.L. Mottern, G.T. Quickel, J.Y. Shi, D. Yu, and H. Verweij, in Proc. 8th Int. Conf. Inorganic Membranes, July 18–22, 2004, edited by Y.S. Lin (Adams Press, Chicago, 2004) p. 26.

    Google Scholar 

  37. J. Etienne, A. Larbot, A. Julbe, C. Guizard, and L. Cot, J. Membr. Sci. 86 (1994) p. 95.

    Google Scholar 

  38. I. Voigt, G. Fisher, P. Puhlfürß, M. Schleifenheimer, and M. Stahn, Sep. Purif. Technol. 32 (2003) p. 87.

    Google Scholar 

  39. J. Liang, X. Jiang, G. Liu, Z. Deng, J. Zhuang, F. Li, and Y. Li, Mater. Res. Bull. 38 (2003) p. 161.

    Google Scholar 

  40. J.Y. Shi and H. Verweij, Langmuir 21 (2005) p. 5570.

    Google Scholar 

  41. D. Lee, L. Zhang, S.T. Oyama, S. Niu, and R.F. Saraf, J. Membr. Sci. 231 (2004) p. 117.

    Google Scholar 

  42. K. Shqau, M.L. Mottern, D. Yu, and H. Verweij, J. Am. Ceram. Soc. 89 (6) (2006) p. 1790.

    Google Scholar 

  43. A. Nijmeijer, C. Huiskes, N.G.M. Sibelt, H. Kruidhof, and H. Verweij, Am. Ceram. Soc. Bull. 77 (1998) p. 95.

    Google Scholar 

  44. P.M. Biesheuvel and H. Verweij, J. Membr. Sci. 156 (1999) p. 141.

    Google Scholar 

  45. Y. Yoshino, T. Suzuki, B.N. Nair, H. Taguchi, and N. Itoh, J. Membr. Sci. 267 (1) (2005) p. 8.

    Google Scholar 

  46. H.W. Brinkman, J.P.G.M. van Eijk, H.A. Meinema, and R.A. Terpstra, Am. Ceram. Soc. Bull. 78 (12) (1999) p. 51.

    Google Scholar 

  47. Ceramem Corp. Web page, “Technology Brief: Ceramic Membrane Modules,” www.ceramem.com/techbrief.pdf (accessed August 2006).

  48. A.J. Millan, M.I. Nieto, R. Moreno, and C. Baudin, J. Eur. Ceram. Soc. 22 (2002) p. 2223.

    Google Scholar 

  49. C. Toy and O.J. Whittemore, Ceram. Int. 15 (1989) p. 167.

    Google Scholar 

  50. N.E. Benes, A. Nijmeijer, and H. Verweij, in Recent Advances in Gas Separation by Microporous Ceramic Membranes, edited by N.K. Kanellopoulos (Elsevier, 2000) p. 335.

  51. C. Huiskes, M. Luijten, H. Kruidhof, N.E. Benes, D.H.M. Blank, and H.J.M. Bouwmeester, in Proc. 8th Int. Conf. Inorganic Membranes, July 18–22, 2004, edited by Y.S. Lin (Adams Press, Chicago, 2004) p. 130.

    Google Scholar 

  52. N.E. Benes, G. Spijksma, H. Verweij, H. Wormeester, and B. Poelsema, AIChE J. 47 (5) (2001) p. 1212.

    Google Scholar 

  53. M.E. Welk and T.M. Nenoff, in Proc. 8th Int. Conf. Inorganic Membranes, July 18–22, 2004, edited by Y.S. Lin (Adams Press, Chicago, 2004) p. 220.

    Google Scholar 

  54. M. Pan and Y.S. Lin, Microporous Mesoporous Mater. 43 (2001) p. 319.

    Google Scholar 

  55. T. Masuda, N. Fukumoto, M. Kitamura, S.R. Mukai, K. Hashimoto, T. Tanaka, and T. Funabiki, Microporous Mesoporous Mater. 48 (2001) p. 239.

    Google Scholar 

  56. M. Hong, J.L. Falconer, and R.D. Noble, Ind. Eng. Chem. Res. 44 (2005) p. 4035.

    Google Scholar 

  57. N.E. Benes, P.M. Biesheuvel, and H. Verweij, AIChE J. 45 (1999) p. 1322.

    Google Scholar 

  58. G.P. Fotou, Y.S. Lin, and S.E. Pratsinis, J. Mater. Sci. 30 (1995) p. 2803.

    Google Scholar 

  59. A. Nijmeijer, “Hydrogen-Selective Silica Membranes for Use in Membrane Steam Reforming,” PhD thesis, University of Twente (1999).

  60. S.G. Deng and Y.S. Lin, Ind. Eng. Chem. Res. 34 (1995) p. 4063.

    Google Scholar 

  61. R.M. de Vos, “High-Selectivity, High-Flux Silica Membranes for Gas Separation,” PhD thesis, University of Twente (1998).

  62. A. Nijmeijer, H. Kruidhof, R. Bredesen, and H. Verweij, J. Am. Ceram. Soc. 84 (1) (2001) p. 136.

    Google Scholar 

  63. A.L. Giannuzzi and F.A. Stevie, Micron 30 (3) (1999) p. 197.

    Google Scholar 

  64. P.M. Biesheuvel and J. Lyklema, J. Phys.: Condens. Matter 17 (2005) p. 6337.

    Google Scholar 

  65. N.E. Benes, “Mass Transport in Thin Supported Silica Membranes,” PhD thesis, University of Twente (2000).

  66. P.M. Biesheuvel, V. Breedveld, A.P. Higler, and H. Verweij, Chem. Eng. Sci. 56 (11) (2001) p. 3517.

    Google Scholar 

  67. X. Chen, W. Yang, J. Liu, and L. Lin, J. Membr. Sci. 255 (1–2) (2005) p. 201.

    Google Scholar 

  68. H. Segerer, Am. Ceram. Soc. Bull. 77 (3) (1998) p. 64.

    Google Scholar 

  69. F.C.M. Woudenberg, W.F.C. Sager, J.E. ten Elshof, and H. Verweij, J. Am. Ceram. Soc. 87 (8) (2004) p. 1430.

    Google Scholar 

  70. M.J. Hart and A.G.R. Evans, Semicond. Sci. Technol. 3 (1988) p. 421.

    Google Scholar 

  71. G.Z. Cao, J. Meijerink, H.W. Brinkman, and A.J. Burggraaf, J. Membr. Sci. 83 (1993) p. 221.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verweij, H., Lin, Y.S. & Dong, J. Microporous Silica and Zeolite Membranes for Hydrogen Purification. MRS Bulletin 31, 756–764 (2006). https://doi.org/10.1557/mrs2006.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.189

Keywords

Navigation