Skip to main content
Log in

Applications of Density Functional Theory in the Geosciences

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Although density functional theory (DFT) calculations have been widely used in many areas of the geosciences for the last 15 years, arguably the most successful application of these methods has been when they are used to understand the properties of minerals and melts in the Earth’s pressures of the Earth’s 6000 K and 360GPa) are so extreme that experiments under these conditions are very difficult. DFT calculations have been used to provide invaluable estimates of physical parameters that are fundamental to understanding the dynamics and evolution of the Earth. In particular, DFT calculations have helped provide estimates of the mineralogy and chemistry of the Earth’s core, the high-temperature and pressure elasticity of the stable crystal phases in the mantle, the effect of defects on physical properties of mantle minerals, and, most recently, the discovery of a new phase of (Mg, Fe)SiO3 just above the core. These and other applications of DFT in the geosciences are described and their implications discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K. Mao and R.J. Hemley, Rev. Mineral. 37 (1998) p. 1.

    CAS  Google Scholar 

  2. G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) p. 11169.

    Google Scholar 

  3. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6 (1996) p. 15.

    CAS  Google Scholar 

  4. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.: Condens. Matter 14 (2002) p. 2717.

    CAS  Google Scholar 

  5. X. Gonze, G.M. Rignanese, M. Verstraete, J.M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J.Y. Raty, V. Olevanov, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan, Z. Kristallogr. 220 (2005) p. 558.

    CAS  Google Scholar 

  6. L. Stixrude and R.E. Cohen, Geophys. Res. Lett. 22 (1995) p. 125.

    CAS  Google Scholar 

  7. J.D.C. McDonough and S.S. Sun, Chem. Geol. 120 (1995) p. 233.

    Google Scholar 

  8. F. Birch, J. Geophys. Res. 69 (1964) p. 4377.

    CAS  Google Scholar 

  9. J.H. Nguyen and N.C. Holmes, Nature 27 (2004) p. 427.

    Google Scholar 

  10. L. Vočadlo, J.P. Brodholt, D. Alfe, M. Gillan, and G.P. Price, Phys. Earth Planet. Int. 26 (2000) p. 123.

    Google Scholar 

  11. P. Soderlind, J.A. Moriarty, and J.M. Wills, Phys. Rev. B 53 (1996) p. 14063.

    Google Scholar 

  12. L. Vočadlo, J. Brodholt, D. Alfe, M.J. Gillan, and G.D. Price, Phys. Earth Planet. Int. 117 (2000) p. 123.

    Google Scholar 

  13. H.K. Mao, J. Xu, V.V. Struzhkin, J. Shu, R.J. Hemley, W. Sturhahn, M.Y. Hu, E.E. Alp, L. Vočadlo, D. Alfe, G.D. Price, M.J. Gillan, M. Schwoerer-Bohning, D. Hausermann, P. Eng, G. Shen, H. Giefers, R. Lubbers, and G. Wortmann, Science 292 (2001) p. 914.

    CAS  Google Scholar 

  14. M.J. Brown, Geophys. Res. Lett. 28 (2001) p. 4339.

    CAS  Google Scholar 

  15. W. Petry, J. Phys. IV 5 (1995) p. 15.

    Google Scholar 

  16. J. Trampenau, A. Heiming, W. Petry, M. Alba, C. Herzig, W. Miekeley, and H.R. Schober, Phys. Rev. B 43 (1991) p. 10963.

    Google Scholar 

  17. L. Vočadlo, D. Alfe, M.J. Gillan, I.G. Wood, J.P. Brodholt, and G.D. Price, Nature 424 (2003) p. 536.

    Google Scholar 

  18. L. Vočadlo, G.D. Price, and I.G. Wood, Acta Crystallogr., Sect B: Struct. Sci. 55 (1999) p. 484.

    Google Scholar 

  19. D.P. Dobson, L. Vočadlo, and I.G. Wood, Am. Mineral. 87 (2002) p. 784.

    CAS  Google Scholar 

  20. J.F. Lin, D.L. Heinz, A.J. Campbell, J.M. Devine, and G.Y. Shen, Science 295 (2002) p. 313.

    CAS  Google Scholar 

  21. K.C. Creager, Nature 356 (1992) p. 309.

    Google Scholar 

  22. X.D. Song and D.V. Helmberger, Geophys. Res. Lett. 20 (1993) p. 2591.

    Google Scholar 

  23. X.D. Song and D.V. Helmberger, Science 282 (1998) p. 924.

    CAS  Google Scholar 

  24. X.D. Song and X.X. Xu, Geophys. Res. Lett. 29 (2002).

  25. C. Beghein and J. Trampert, Science 299 (2003) p. 552.

    CAS  Google Scholar 

  26. S. Yoshida, I. Sumita, and M. Kumazawa, J. Geophys. Res.: Solid Earth 101 (1996) p. 28085.

    CAS  Google Scholar 

  27. B.A. Buffett and H.R. Wenk, Nature 413 (2001) p. 60.

    CAS  Google Scholar 

  28. D. Alfe, M.J. Gillan, and G.D. Price, Nature 405 (2000) p. 172.

    CAS  Google Scholar 

  29. J.-P. Poirier, Geophys. J. 92 (1988) p. 99.

    Google Scholar 

  30. G.A. de Wijs, G. Kresse, L. Vočadlo, D. Dobson, D. Alfe, M.J. Gillan, and G.D. Price, Nature 392 (1998) p. 805.

    Google Scholar 

  31. D. Alfe and M.J. Gillan, Phys. Rev. B 58 (1998) p. 8248.

    Google Scholar 

  32. L. Vočadlo, D. Alfe, G.D. Price, and M.J. Gillan, Phys. Earth Planet. Int. 120 (2000) p. 145.

    Google Scholar 

  33. R.M. Wentzcovitch, J.L. Martins, and G.D. Price, Phys. Rev. Lett. 70 (1993) p. 3947.

    CAS  Google Scholar 

  34. L. Stixrude and R.E. Cohen, Nature 364 (1993) p. 613.

    CAS  Google Scholar 

  35. P. D’Arco, G. Sandrone, R. Dovesi, R. Orlando, and V.R. Saunders, Phys. Chem. Miner. 20 (1993) p. 407.

    Google Scholar 

  36. R. Wentzcovitch, N.L. Ross, and G.D. Price, Phys. Earth Planet. Int. 90 (1995) p. 101.

    CAS  Google Scholar 

  37. A.R. Oganov, J.P. Brodholt, and G.D. Price, Earth Planet. Sci. Lett. 184 (2001) p. 555.

    CAS  Google Scholar 

  38. A.R. Oganov, J.P. Brodholt, and G.D. Price, Nature 411 (2001) p. 934.

    CAS  Google Scholar 

  39. R.M. Wentzcovitch, B.B. Karki, M. Cococcioni, and S. de Gironcoli, Phys. Rev. Lett. 92 (2004).

  40. J. Trampert, F. Deschamps, J. Resovsky, and D. Yuen, Science 306 (2004) p. 853.

    CAS  Google Scholar 

  41. J.P. Brodholt, Am. Mineral. 82 (1997) p. 1049.

    CAS  Google Scholar 

  42. D.E. Janney and J.F. Banfield, Am. Mineral. 83 (1998) p. 799.

    CAS  Google Scholar 

  43. D.R. Bell and G.R. Rossman, Science 255 (1992) p. 1391.

    CAS  Google Scholar 

  44. J.D.C. McConnell, J.S. Lin, and V. Heine, Phys. Chem. Mineral. 22 (1995) p. 357.

    CAS  Google Scholar 

  45. J.P. Brodholt and K. Refson, J. Geophys. Res. 105 (2000) p. 18977.

    CAS  Google Scholar 

  46. J. Zhang and D.J. Weidner, Science 284 (1999) p. 782.

    CAS  Google Scholar 

  47. T. Yamamoto, D.A. Yuen, and T. Ebisuzaki, Earth Planet. Sci. Lett. 206 (2003) p. 617.

    CAS  Google Scholar 

  48. J.P. Brodholt, Nature 207 (2000) p. 620.

    Google Scholar 

  49. M.J. Walter, A. Kubo, T. Yoshino, J. Brodholt, K.T. Koga, and Y. Ohishi, Earth Planet. Sci. Lett. 222 (2004) p. 501.

    CAS  Google Scholar 

  50. B. Chao, Eos: Trans. Amer. Geophys. Union 81 (2000) p. 46.

    Google Scholar 

  51. M.E. Wysession, T. Lay, J. Revenaugh, Q. Williams, E.J. Garnero, R. Jeanloz, and L.H. Kellogg, in The Core–Mantle Boundary Region, Vol. 28, edited by M. Gurnis, M.E. Wysession, E. Knittle, and B.A. Buffett (American Geophysical Union, Washington, DC, 1998) p. 273.

    Google Scholar 

  52. I. Sidorin, M. Gurnis, and D.V. Helmberger, Science 286 (1999) p. 1326.

    CAS  Google Scholar 

  53. I. Sidorin, M. Gurnis, and D.V. Helmberger, J. Geophys. Res.: Solid Earth 104 (1999) p. 15005.

    CAS  Google Scholar 

  54. M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, Science 304 (2004) p. 855.

    CAS  Google Scholar 

  55. A. Oganov and S. Ono, Nature 430 (2004) p. 445.

    CAS  Google Scholar 

  56. T. Tsuchiya, J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch, Earth Planet. Sci. Lett. 224 (2004) p. 241.

    CAS  Google Scholar 

  57. T. Iitaka, K. Hirose, K. Kawamura, and M. Murakami, Nature 430 (2004) p. 442.

    CAS  Google Scholar 

  58. T. Tsuchiya, J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch, Geophys. Res. Lett. 31 L14603 (2004).

    Google Scholar 

  59. J. Wookey, S. Stackhouse, J.M. Kendall, J. Brodholt, and G.D. Price, Nature 438 (2005) p. 1004.

    CAS  Google Scholar 

  60. S. Stackhouse, J.P. Brodholt, and G.D. Price, Geophys. Res. Lett. 32 (2005) article No. L13305.

  61. S. Stackhouse, J.P. Brodholt, and G.D. Price, Geophys. Res. Lett. 33 (2006) article No. L01304.

  62. S. Akber-Knutson, G. Steinle-Neumann, and P.D. Asimow, Geophys. Res. Lett. 32 (2005) article No. L14303.

  63. R. Caracas and R.E. Cohen, Geophys. Res. Lett. 32 (2005) article No. L16310.

  64. D.Y. Jung and A.R. Oganov, Phys. Chem. Miner. 32 (2005) p. 146.

    Google Scholar 

  65. D.J. Harris, J.P. Brodholt, and D.M. Sherman, J. Phys. Chem. B 107 (2003) p. 9056.

    Google Scholar 

  66. D.M. Sherman, Geochim. Cosmochim. Acta 69 (2005) p. 3249.

    CAS  Google Scholar 

  67. C.L. Peacock and D.M. Sherman, Geochim. Cosmochim. Acta 68 (2004) p. 2623.

    CAS  Google Scholar 

  68. L. Stixrude and D.R. Peacor, Nature 420 (2002) p. 165.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodholt, J.P., Voĉadlo, L. Applications of Density Functional Theory in the Geosciences. MRS Bulletin 31, 675–680 (2006). https://doi.org/10.1557/mrs2006.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.176

Keywords

Navigation