Skip to main content
Log in

Ultrafast Imaging of Materials: Exploring the Gap of Space and Time

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The materials science community is poised to take advantage of new technologies that add unprecedented time resolution to already existing spatial-resolution capabilities. In the same way that chemists and biologists are using ultrafast optical, photon, and particle techniques to reveal transition pathways, materials scientists can expect to use variations of these methods to probe the most fundamental aspects of complex transient phenomena in materials. The combination of high-spatial-resolution imaging with high time resolution is critical because it enables the observation of specific phenomena that are important to developing fundamental understanding. Such a capability is also important because it enables experiments that are on the same time and length scales as recent high-performance computer simulations. This article describes several new techniques that have great potential for broader application in materials science, including electron, x-ray, and γ-ray imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Sorby, J. Iron & Steel Inst. 30 (1886) p. 140.

    Google Scholar 

  2. H.C. Sorby, J. Iron & Steel Inst. 31 (1887) p. 255.

    Google Scholar 

  3. P.B. Hirsch, R.W. Horne, and M.J. Whelan, Philos. Mag. 1 (1956) p. 677.

    Article  CAS  Google Scholar 

  4. Y. Glinec, J. Faure, L.L. Dain, S. Darbon, T. Hosokai, J.J. Santos, E. Lefebvre, J.P. Rousseau, F. Burgy, B. Mercier, and V. Malka, Phys. Rev. Lett. 94 025003 (2005).

    Article  CAS  Google Scholar 

  5. W.E. King, G.H. Campbell, A. Frank, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, and P.M. Weber, J. Appl. Phys. 97 111101 (2005).

    Article  CAS  Google Scholar 

  6. O. Bostanjoglo, Adv. Imaging & Electron Phys. 121 (2002) p. 1.

    Article  CAS  Google Scholar 

  7. H. Dömer and O. Bostanjoglo, Rev. Sci. Instrum. 74 (2003) p. 4369.

    Article  CAS  Google Scholar 

  8. V.A. Lobastov, R. Srinivasan, and A.H. Zewail, Proc. Natl. Acad. Sci. USA 102 (2005) p. 7069.

    Article  CAS  Google Scholar 

  9. A.H. Zewail, Philos. Trans. R. Soc. London, Ser. A 363 (2005) p. 315.

    CAS  Google Scholar 

  10. O. Bostanjoglo and T. Rosin, Phys. Status Solidi A 57 (1980) p. 561.

    Article  CAS  Google Scholar 

  11. J.M. Thomas, Angew. Chem. Int. Ed. 44 (2005) p. 5563.

    Article  CAS  Google Scholar 

  12. K.J. Gaffney, A.M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A.G. MacPhee, D. Weinstein, D.P. Lowney, T. Allison, T. Matthews, R.W. Falcone, A.L. Cavalieri, D.M. Fritz, S.H. Lee, P.H. Bucksbaum, D.A. Reis, J. Rudati, A.T. Macrander, P.H. Fuoss, C.C. Kao, D.P. Siddons, R. Pahl, K. Moffat, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H.N. Chapman, R.W. Lee, T.N. Hansen, J.S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R.A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, and J.B. Hastings, Phys. Rev. Lett. 95 125701 (2005).

    Article  CAS  Google Scholar 

  13. F. Schotte, M.H. Lim, T.A. Jackson, A.V. Smirnov, J. Soman, J.S. Olson, G.N. Phillips, M. Wulff, and P.A. Anfinrud, Science 300 (2003) p. 1944.

    Article  CAS  Google Scholar 

  14. B.J. Siwick, J.R. Dwyer, R.E. Jordan, and R.J.D. Miller, Science 302 (2003) p. 1382.

    Article  CAS  Google Scholar 

  15. B.J. Siwick, J.R. Dwyer, R.E. Jordan, and R.J.D. Miller, Chem. Phys. 299 (2004) p. 285.

    Article  CAS  Google Scholar 

  16. G.H. Jansen, Coulomb Interactions in Particle Beams, Vol. 21 (Academic Press, San Diego, CA, 1990) p. 546.

    Google Scholar 

  17. J.A. Liddle, M.I. Blakey, K. Bolan, R.C. Farrow, G.M. Gallatin, R. Kasica, V. Katsap, C.S. Knurek, J. Li, M. Mkrtchyan, A.E. Novembre, L. Ocola, P.A. Orphanos, M.L. Peabody, S.T. Stanton, K. Teffeau, W.K. Waskiewicz, and E. Munro, J. Vac. Sci. Technol., B 19 (2001) p. 476.

    Article  CAS  Google Scholar 

  18. E.M. James, N.D. Browning, A.W. Nicholls, M. Kawasaki, Y. Xin, and S. Stemmer, J. Electron Microsc. 47 (1998) p. 561.

    Article  CAS  Google Scholar 

  19. G.V. Spivak, O.P. Pavlyuchenko, and V.I. Petrov, Bull. Acad. Sci. USSR 30 (1966) p. 822.

    Google Scholar 

  20. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris, J. Mater. Res. 19 (2004) p. 176.

    Article  CAS  Google Scholar 

  21. X.L. Tan, H. He, and J.K. Shang, J. Mater. Res. 20 (2005) p. 1641.

    Article  CAS  Google Scholar 

  22. Linac Coherent Light Source (LCSC) home page, www-ssrl.slac.stanford.edu/lcls/ (accessed July 2006).

  23. “TESLA Technical Design Report, Part V: The X-Ray Free Electron Laser,” edited by G. Materlik and Th. Tschentscher, http://tesla.desy.de/new_pages/TDR_CD/PartV/fel.html (accessed July 2006).

  24. N. Bloembergen, Rev. Mod. Phys. 71 (1999) p. S283.

    Article  CAS  Google Scholar 

  25. A. Rousse, C. Rischel, and J.C. Gauthier, Rev. Mod. Phys. 73 (2001) p. 17.

    Article  CAS  Google Scholar 

  26. C. Bressler and M. Chergui, Chem. Rev. 104 (2004) p. 1781.

    Article  CAS  Google Scholar 

  27. C. Rischel, A. Rousse, I. Uschmann, P.A. Albouy, J.P. Geindre, P. Audebert, J.C. Gauthier, E. Forster, J.L. Martin, and A. Antonetti, Nature 390 (1997) p. 490.

    Article  CAS  Google Scholar 

  28. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C. Toth, T. Guo, M. Kammler, M.H. von Hoegen, K.R. Wilson, D. von der Linde, and C.P.J. Barty, Science 286 (1999) p. 1340.

    Article  CAS  Google Scholar 

  29. C. Rose-Petruck, R. Jimenez, T. Guo, A. Cavalleri, C.W. Siders, F. Raksi, J.A. Squier, B.C. Walker, K.R. Wilson, and C.P.J. Barty, Nature 398 (1999) p. 310.

    Article  CAS  Google Scholar 

  30. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Foster, J.P. Geindre, P. Audebert, J.C. Gauthier, and D. Hulin, Nature 410 (2001) p. 65.

    Article  CAS  Google Scholar 

  31. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M.H. von Hoegen, D. von der Linde, A. Cavalleri, J. Squier, and M. Kammler, Phys. Rev. Lett. 87 225701 (2001).

    Article  CAS  Google Scholar 

  32. A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, and J.C. Kieffer, Phys. Rev. Lett. 87 237401 (2001).

    Article  CAS  Google Scholar 

  33. T. Feurer, A. Morak, I. Uschmann, C. Ziener, H. Schwoerer, C. Reich, P. Gibbon, E. Forster, R. Sauerbrey, K. Ortner, and C.R. Becker, Phys. Rev. E 65 016412 (2002).

    Article  CAS  Google Scholar 

  34. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Forster, M. Kammler, M. Hornvon-Hoegen, and D. von der Linde, Nature 422 (2003) p. 287.

    Article  CAS  Google Scholar 

  35. A. Rousse, P. Audebert, J.P. Geindre, F. Fallies, J.C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, Phys. Rev. E 50 (1994) p. 2200.

    Article  CAS  Google Scholar 

  36. T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43 (1979) p. 267.

    Article  CAS  Google Scholar 

  37. I. Kostyukov, S. Kiselev, and A. Pukhov, Phys. Plasmas 10 (2003) p. 4818.

    Article  CAS  Google Scholar 

  38. A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74 (2002) p. 355.

    Article  CAS  Google Scholar 

  39. A. Rousse, K.T. Phuoc, R. Shah, A. Pukhov, E. Lefebvre, V. Malka, S. Kiselev, F. Burgy, J.P. Rousseau, D. Umstadter, and D. Hulin, Phys. Rev. Lett. 93 135005 (2004).

    Article  CAS  Google Scholar 

  40. K.T. Phuoc, F. Burgy, J.P. Rousseau, V. Malka, A. Rousse, R. Shah, D. Umstadter, A. Pukhov, and S. Kiselev, Phys. Plasmas 12 023101 (2005).

    Article  CAS  Google Scholar 

  41. Y.-J. Chen, L.R. Bertolini, G.J. Caporaso, F.W. Chambers, E.G. Cook, S. Falabella, F.J. Goldin, G. Guethlein, D.D.-M. Ho, J.F. McCarrick, S.D. Nelson, R. Neurath, A.C. Paul, P.A. Pincosy, B.R. Poole, R.A. Richardson, S. Sampayan, L.-F. Wang, and J.A. Watson, presented at the XXI Intl. Linac Conf. (Gyeongju, Korea, August 19–23, 2002).

  42. S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E. Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski, A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, and K. Krushelnick, Nature 431 (2004) p. 535.

    Article  CAS  Google Scholar 

  43. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W.P. Leemans, Nature 431 (2004) p. 538.

    Article  CAS  Google Scholar 

  44. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, F. Burgy, and V. Malka, Nature 431 (2004) p. 541.

    Article  CAS  Google Scholar 

  45. T. LaGrange, M.A. Armstrong, K.R. Boyden, C.G. Brown, N.D. Browning, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F.V. Hartemann, J.S. Kim, W.E. King, B.J. Pyke, B.W. Reed, M.D. Shirk, R.M. Shuttlesworth, B.C. Stuart, and B.R. Torralva, “Single Shot Dynamic Transmission Electron Microscopy,” Appl. Phys. Lett. 89 044105 (2006).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, W.E., Armstrong, M., Malka, V. et al. Ultrafast Imaging of Materials: Exploring the Gap of Space and Time. MRS Bulletin 31, 614–619 (2006). https://doi.org/10.1557/mrs2006.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.158

Keywords

Navigation