Skip to main content
Log in

Polymer-Supported Membranes: Physical Models of Cell Surfaces

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The functional modification of solid surfaces with plasma membrane models has been drawing increasing attention as a straightforward strategy to bridge soft biological materials and hard inorganic materials. Planar model membranes can be deposited either directly on solid substrates (solid-supported membranes), or on ultrathin polymer supports (polymer-supported membranes) that mimic the generic role of the extracellular matrix and the cell surface. The first part of this review provides an overview of advances in the fabrication of polymer-supported membranes. The middle section describes how such thin polymer interlayers can physically modulate the membrane–substrate contact. The last section introduces several methods to localize membranes and membrane proteins. Finally, some ideas are presented on combining supported membrane concepts with semiconductor technology toward applications in materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sackmann, in Handbook of Biological Physics, edited by R. Lipowsky and E. Sackmann (Elsevier Science, Amsterdam, 1995) p. 213.

    Google Scholar 

  2. A.A. Brian and H.M. McConnell, Proc. Natl. Acad. Sci. USA 81 (1984) p. 6159.

    Google Scholar 

  3. P. Chan, M.B. Lawrence, M.L. Dustin, L.M. Ferguson, D.E. Golan, and T.A. Springer, J. Cell Biol. 10 (1991) p. 245.

    Google Scholar 

  4. E.-M. Erb, K. Tangemann, B. Bohrmann, B. Müller, and J. Engel, Biochemistry 36 (1997) p. 7395.

    Google Scholar 

  5. A. Kloboucek, A. Behrisch, J. Faix, and E. Sackmann, Biophys. J. 77 (1999) p. 2311.

    Google Scholar 

  6. S.Y. Qi, J.T. Groves, and A.K. Chakraborty, Proc. Natl. Acad. Sci. USA 98 (2001) p. 6548.

    Google Scholar 

  7. A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, A.S. Shaw, P.M. Allen, and M.L. Dustin, Science 285 (1999) p. 221.

    Google Scholar 

  8. J.T. Groves and M.L. Dustin, J. Immunol. Methods 278 (2003) p. 19.

    Google Scholar 

  9. E. Sackmann and M. Tanaka, Trends Biotechnol. 18 (2000) p. 58.

    Google Scholar 

  10. L.K. Tamm and H.M. McConnell, Biophys. J. 47 (1985) p. 105.

    Google Scholar 

  11. E. Sackmann, Science 271 (1996) p. 43.

    Google Scholar 

  12. J.T. Groves and S.G. Boxer, Acc. Chem. Res. 35 (2002) p. 149.

    Google Scholar 

  13. T.H. Watts, H.E. Gaub, and H.M. Mc-Connell, Nature 320 (1986) p. 179.

    Google Scholar 

  14. E. Kalb, S. Frey, and L.K. Tamm, Biochim. Biophys. Acta 1103 (1992) p. 307.

    Google Scholar 

  15. S.A. Tatulian, P. Hinterdorfer, G. Baber, and L.K. Tamm, EMBO J. 14 (1995) p. 5514.

    Google Scholar 

  16. S. Terrettaz, T. Stora, C. Duschl, and H. Vogel, Langmuir 9 (1993) p. 1361.

    Google Scholar 

  17. K. Kjaer, J. Als-Nielsen, C.A. Helm, L.A. Laxhuber, and H. Mohwald, Phys. Rev. Lett. 58 (1987) p. 2224.

    Google Scholar 

  18. S.J. Johnson, T.M. Bayerl, D.C. McDermott, G.W. Adam, A.R. Rennie, R.K. Thomas, and E. Sackmann, Biophys. J. 59 (1991) p. 289.

    Google Scholar 

  19. E. Kalb, J. Engel, and L.K. Tamm, Biochemistry 29 (1990) p. 1607.

    Google Scholar 

  20. R. Bruinsma, A. Behrisch, and E. Sackmann, Phys. Rev. E 61 (2000) p. 4253.

    Google Scholar 

  21. E. Sackmann and R.F. Bruinsma, ChemPhysChem 3 (2002) p. 262.

    Google Scholar 

  22. T. M. Bayerl and M. Bloom, Biophys. J. 58 (1990) p. 357.

    Google Scholar 

  23. A. Lambacher and P. Fromherz, Appl. Phys. A 63 (1996) p. 207.

    Google Scholar 

  24. M. Tanaka and E. Sackmann, Nature 437 (2005) p. 656.

    Google Scholar 

  25. W. Knoll, C.W. Frank, C. Heibel, R. Naumann, A. Offenhäuser, J. Rühe, E.K. Schmidt, W.W. Shen, and A. Sinner, Rev. Mol. Biotechnol. 74 (2000) p. 137.

    Google Scholar 

  26. M.L. Wagner and L.K. Tamm, Biophys. J. 61 (2001) p. 266.

    Google Scholar 

  27. F. Brochard-Wyart and P.G. de Gennes, Adv. Colloid Interface Sci. 39 (1992) p. 1.

    Google Scholar 

  28. B.V. Derjaguin and N.V. Churaev, Surface Forces (Consultants Bureau, New York, 1987).

    Google Scholar 

  29. F. Rehfeldt, R. Steitz, S.P. Armes, A.P. Gast, and M. Tanaka, J. Phys. Chem. B 110 (2006) p. 9177.

    Google Scholar 

  30. H. Lang, C. Duschl, and H. Vogel, Langmuir 10 (1994) p. 197.

    Google Scholar 

  31. B.A. Cornell, V. Braach-Maksvytis, L.G. King, P.D.J. Osman, B. Raguse, L. Wieczorek, and R.J. Pace, Nature 387 (1997) p. 580.

    Google Scholar 

  32. S.M. Schiller, R. Naumann, K. Lovejoy, H. Kunz, and W. Knoll, Angew. Chem. Int. Ed. Engl. 42 (2003) p. 208.

    Google Scholar 

  33. M.L. Wagner and L.K. Tamm, Biophys. J. 79 (2000) p. 1400.

    Google Scholar 

  34. N. Bunjes, E.K. Schmidt, A. Jonczyk, F. Rippmann, D. Beyer, H. Ringsdorf, P. Gräber, W. Knoll, and R. Naumann, Langmuir 13 (1997) p. 6188.

    Google Scholar 

  35. O. Purrucker, A. Förtig, R. Jordan, and M. Tanaka, ChemPhysChem 5 (2004) p. 327.

    Google Scholar 

  36. O. Purrucker, A. Förtig, K. Ludke, R. Jordan, and M. Tanaka, J. Am. Chem. Soc. 127 (2005) p. 1258.

    Google Scholar 

  37. S. Goennenwein, M. Tanaka, B. Hu, L. Moroder, and E. Sackmann, Biophys. J. 85 (2003) p. 646.

    Google Scholar 

  38. P.G. Saffman and M. Delbruck, Proc. Natl. Acad. Sci. USA 72 (1975) p. 3111.

    Google Scholar 

  39. E. Evans and E. Sackmann, J. Fluid. Mech. 194 (1988) p. 553.

    Google Scholar 

  40. M. Kühner, R. Tampé, and E. Sackmann, Biophys. J. 67 (1994) p. 217.

    Google Scholar 

  41. J. Salafsky, J.T. Groves, and S.G. Boxer, Biochemistry 35 (1996) p. 14773.

    Google Scholar 

  42. M. Tanaka, S. Kaufmann, J. Nissen, and M. Hochrein, Phys. Chem. Chem. Phys. 3 (2001) p. 4091.

    Google Scholar 

  43. M. Tanaka, A.P. Wong, F. Rehfeldt, M. Tutus, and S. Kaufmann, J. Am. Chem. Soc. 126 (2004) p. 3257.

    Google Scholar 

  44. X. Zhu, J. De Graaf, F.M. Winnik, and D. Leckband, Langmuir 20 (2004) p. 1459.

    Google Scholar 

  45. A.S. Lee, V. Butun, M. Vamvakaki, S.P. Armes, J.A. Pople, and A.P. Gast, Macromolecules 35 (2002) p. 8540.

    Google Scholar 

  46. T.A. Springer, Annu. Rev. Physiol. 57 (1995) p. 827.

    Google Scholar 

  47. T. Yang, O.K. Baryshnikova, H. Mao, M.A. Holden, and P.S. Cremer, J. Am. Chem. Soc. 125 (2003) p. 4779.

    Google Scholar 

  48. M. Stelzle, R. Mielich, and E. Sackmann, Biophys. J. 63 (1992) p. 1346.

    Google Scholar 

  49. J.T. Groves, S.G. Boxer, and H.M. Mc-Connell, Proc. Natl. Acad. Sci. USA 25 (1997) p. 13390.

    Google Scholar 

  50. J.T. Groves, C. Wulfing, and S.G. Boxer, Biophys. J. 71 (1996) p. 2716.

    Google Scholar 

  51. D.J. Olson, J.M. Johnson, P.D. Partel, E.S.G. Shaqfeh, S.G. Boxer, and G.G. Fuller, Langmuir 17 (2001) p. 7396.

    Google Scholar 

  52. C. Yoshina-Ishii and S.G. Boxer, J. Am. Chem. Soc. 125 (2003) p. 3696.

    Google Scholar 

  53. A. van Oudenaarden and S.G. Boxer, Science 285 (1999) p. 1046.

    Google Scholar 

  54. J.T. Groves, N. Ulman, and S.G. Boxer, Science 275 (1997) p. 651.

    Google Scholar 

  55. J.T. Groves, L.K. Mahal, and C.R. Bertozzi, Langmuir 17 (2001) p. 5129.

    Google Scholar 

  56. K. Morigaki, T. Baumgart, A. Offenhausser, and W. Knoll, Ang. Chem. Int. Ed. 40 (2001) p. 172.

    Google Scholar 

  57. C.K. Yee, M.L. Amweg, and A.N. Parikh, J. Am. Chem. Soc. 126 (2004) p. 13962.

    Google Scholar 

  58. J.S. Hovis and S.G. Boxer, Langmuir 16 (2000) p. 894.

    Google Scholar 

  59. A.R. Sapuri, M.M. Baksh, and J.T. Groves, Langmuir 19 (2003) p. 1606.

    Google Scholar 

  60. L.A. Kung, L. Kam, J.S. Hovis, and S.G. Boxer, Langmuir 16 (2000) p. 6773.

    Google Scholar 

  61. F. Rehfeldt and M. Tanaka, Langmuir 19 (2003) p. 1467.

    Google Scholar 

  62. H. Hillebrandt, M. Tanaka, and E. Sackmann, J. Phys. Chem. B 106 (2002) p. 477.

    Google Scholar 

  63. B. Sakmann and E. Neher, Single-Channel Recording (Plenum Press, New York, 1985).

    Google Scholar 

  64. A.L. Plant, M. Gueguetchkeri, and W. Yap, Biophys. J. 67 (1994) p. 1126.

    Google Scholar 

  65. C. Steinem, A. Janshoff, W.-P. Ulrich, M. Sieber, and H.-J. Galla, Biochim. Biophys. Acta 1279 (1996) p. 169.

    Google Scholar 

  66. M. Stenberg, H. Arwin, and A. Nilsson, J. Colloid Interface Sci. 72 (1979) p. 255.

    Google Scholar 

  67. H. Hillebrandt, G. Wiegand, M. Tanaka, and E. Sackmann, Langmuir 15 (1999) p. 8451.

    Google Scholar 

  68. S. Gritsch, P. Nollert, F. Jähnig, and E. Sackmann, Langmuir 14 (1998) p. 3118.

    Google Scholar 

  69. W. Wiegand, K.R. Neumaier, and E. Sackmann, Rev. Sci. Inst. 71 (2000) p. 2309.

    Google Scholar 

  70. P. Fromherz, A. Offenhausser, T. Vetter, and J. Weis, Science 252 (1991) p. 1290.

    Google Scholar 

  71. G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, Adv. Funct. Mater. 13 (2003) p. 841.

    Google Scholar 

  72. V. Borisenko, T. Lougheed, J. Hesse, F. Füreder-Kitzmüller, N. Fertig, J.C. Behrends, A. Woolley, and G.J. Schütz, Biophys. J. 84 (2003) p. 612.

    Google Scholar 

  73. W. Romer, Y.H. Lam, D. Fischer, A. Watts, W.B. Fischer, P. Goring, R.B. Wehrspohn, U. Gosele, and C. Steinem, J. Am. Chem. Soc. 126 (2004) p. 16267.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M. Polymer-Supported Membranes: Physical Models of Cell Surfaces. MRS Bulletin 31, 513–520 (2006). https://doi.org/10.1557/mrs2006.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.135

Keywords

Navigation