Skip to main content

Combining Polymers, Nanomaterials, and Biomolecules: Nanostructured Films with Functional Properties and Applications

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Abstract

The concepts and methods of nanoarchitectonics are explored to combine materials and architectures for a variety of purposes. In this chapter we concentrate on nanostructured films where the properties of polymers, nanomaterials, and biomolecules are leveraged for various applications. To illustrate the generality and potential of nanoarchitectonics, we discuss two main types of application. In the first, Langmuir monolayers and Langmuir–Blodgett (LB) films are employed as cell membrane models, with which physiological effects from drugs, nanomaterials, and natural polymers can be related to their interaction with the membranes. The second type of application involves LB and layer-by-layer (LbL) films employed in biosensors, with emphasis in the synergy brought from using different materials in a sensing unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss PS (2007) A conversation with Dr. Masakazu Aono: leader in atomic-scale control and nanomanipulation. ACS Nano 1:379–383

    Article  CAS  Google Scholar 

  2. Hensel RC, Moreira M, Riul A, Oliveira ON, Rodrigues V, Hillenkamp M (2020) Monitoring the dispersion and agglomeration of silver nanoparticles in polymer thin films using localized surface plasmons and Ferrell plasmons. Appl Phys Lett 116:103105

    Article  CAS  Google Scholar 

  3. Wilson D, Materon EM, Ibanez-Redin G, Faria RC, Correa DS, Oliveira ON (2019) Electrical detection of pathogenic bacteria in food samples using information visualization methods with a sensor based on magnetic nanoparticles functionalized with antimicrobial peptides. Talanta 194:611–618

    Article  CAS  Google Scholar 

  4. Crespilho FN, Zucolotto V, Brett CMA, Oliveira ON, Nart FC (2006) Enhanced charge transport and incorporation of redox mediators in layer-by-layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110:17478–17483

    Article  CAS  Google Scholar 

  5. Luz RAS, Crespilho FN (2016) Gold nanoparticle-mediated electron transfer of cytochrome c on a self-assembled surface. RSC Adv 6:62585–62593

    Article  CAS  Google Scholar 

  6. Silva RR, Raymundo-Pereira PA, Campos AM, Wilson D, Otoni CG, Barud HS, Costa CAR, Domeneguetti RR, Balogh DT, Ribeiro SJL, Oliveira ON (2020) Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 218:121153

    Article  CAS  Google Scholar 

  7. Girard-Egrot AP, Godoy S, Blum LJ (2005) Enzyme association with lipidic Langmuir-Blodgett films: interests and applications in nanobioscience. Adv Colloid Interf Sci 116:205–225

    Article  CAS  Google Scholar 

  8. Vollhardt D (2002) Supramolecular organisation in monolayers at the air/water interface. Mater Sci Eng C 22:121–127

    Article  Google Scholar 

  9. Hea W, Wanga C, Zhugeb F, Denga X, Xua X, Zhai T (2017) Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35:242–250

    Article  CAS  Google Scholar 

  10. Abid S, Hussain T, Raza ZA, Nazir A (2019) Current applications of electrospun polymeric nanofibers in cancer therapy. Mater Sci Eng C Mater Biol Appl 97:966–977

    Article  CAS  Google Scholar 

  11. Feng GX, Mao D, Liu J, Goh CC, Ng LG, Kong DL, Tang BZ, Liu B (2018) Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale 10:5869–5874

    Article  CAS  Google Scholar 

  12. Mu P, Bai W, Zhang Z, He J, Sun H, Zhu Z, Liang W, Li A (2018) Robust aerogels based on conjugated microporous polymer nanotubes with exceptional mechanical strength for efficient solar steam generation. J Mater Chem A 6:18183–18190

    Article  CAS  Google Scholar 

  13. Morris JD, Thourson SB, Panta KR, Flanders BN, Payne CK (2017) Conducting polymer nanowires for control of local protein concentration in solution. J Phys D Appl Phys 50:174003

    Article  CAS  Google Scholar 

  14. Machado-Paula MM, Corat MAF, Lancellotti M, Mi G, Marciano FR, Vega ML, Hidalgo AA, Webster TJ, Lobo AO (2020) A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Mater Sci Eng C Mater Biol Appl 111:110706

    Article  CAS  Google Scholar 

  15. Mercante LA, Pavinatto A, Iwaki LEO, Scagion VP, Zucolotto V, Oliveira ON, Mattoso LHC, Correa DS (2015) Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7:4784–4790

    Article  CAS  Google Scholar 

  16. Soares JC, Iwaki LEO, Soares AC, Rodrigues VC, Melendez ME, Fregnani JHTG, Reis RM, Carvalho AL, Correa DS, Oliveira ON (2017) Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles. ACS Omega 2:6975–6983

    Article  CAS  Google Scholar 

  17. Soares AC, Soares JC, Paschoalin RT, Rodrigues VC, Melendez ME, Reis RM, Carvalho AL, Mattoso LHC, Oliveira ON (2020) Immunosensors containing solution blow spun fibers of poly(lactic acid) to detect p53 biomarker. Mater Sci Eng C Mater Biol Appl 115:111120

    Article  CAS  Google Scholar 

  18. Liu WJ, Wijeratne S, Yang L, Bruening M (2018) Porous star-star polyelectrolyte multilayers for protein binding. Polymer 138:267–274

    Article  CAS  Google Scholar 

  19. Olivati CA, Ferreira M, Carvalho AJF, Balogh DT, Oliveira ON, von Seggern H, Faria RM (2005) Polymer light emitting devices with Langmuir-Blodgett (LB) films: enhanced performance due to an electron-injecting layer of ionomers. Chem Phys Lett 408:31–36

    Article  CAS  Google Scholar 

  20. Gunkel-Grabole G, Sigg S, Lomora M, Lorcher S, Palivan CG, Meier WP (2015) Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 3:25–40

    Article  CAS  Google Scholar 

  21. Correa DS, Medeiros ES, Oliveira JE, Paterno LG, Mattoso LHC (2014) Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications. J Nanosci Nanotechnol 14:6509–6527

    Article  CAS  Google Scholar 

  22. Sanchez-Ballester NM, Rydzek G, Pakdel A, Oruganti A, Hasegawa K, Mitome M, Golberg D, Hill JP, Abe H, Ariga K (2016) Nanostructured polymeric yolk-shell capsules: a versatile tool for hierarchical nanocatalyst design. J Mater Chem A 4:9850–9857

    Article  CAS  Google Scholar 

  23. Sagiv J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid-surfaces. J Am Chem Soc 102:92–98

    Article  CAS  Google Scholar 

  24. Ariga K (2020) Don’t forget Langmuir-Blodgett films 2020: interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 36:7158–7180

    Article  CAS  Google Scholar 

  25. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  26. Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart FC, Oliveira ON (2006) Dendrimers as nanoreactors to produce platinum nanoparticles embedded in layer-by-layer films for methanol-tolerant cathodes. Electrochem Commun 8:348–352

    Article  CAS  Google Scholar 

  27. Sousa MAM, Siqueira JR, Vercik A, Schoning MJ, Oliveira ON (2017) Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors. IEEE Sensors J 17:1735–1740

    Article  CAS  Google Scholar 

  28. Follmann HDM, Oliveira ON, Lazarin-Bidoia D, Nakamura CV, Huang XX, Asefa T, Silva R (2018) Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale 10:1704–1715

    Article  CAS  Google Scholar 

  29. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  30. Blodgett KB, Langmuir I (1937) Built-up films of barium stearate and their optical properties. Phys Rev 51:0964–0982

    Article  CAS  Google Scholar 

  31. Kobayashi S, Mullen K (2015) Encyclopedia of polymeric nanomaterials. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  32. Liu K, Wang L, Dong R (2020) Two-dimensional conjugated polymer films via liquid-interface-assisted synthesis toward organic electronic devices. J Mater Chem C 8:10696–10718

    Article  CAS  Google Scholar 

  33. Faria RM, Mattoso LHC, Ferreira M, Oliveira ON, Gonçalves D, Bulhoes LOS (1992) Chloroform-soluble poly(o-methoxyaniline) for ultra-thin film fabrication. Thin Solid Films 221:5–8

    Article  CAS  Google Scholar 

  34. Dhanabalan A, Mattoso LHC, Oliveira ON Jr (2000) Langmuir monolayers and Langmuir-Blodgett films of conducting polymers. Curr Trends Polymer Sci 5:19–39

    CAS  Google Scholar 

  35. Oliveira ON Jr (1992) Langmuir-Blodgett films: properties and possible applications. Braz J Phys 22:60

    CAS  Google Scholar 

  36. Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327

    Article  CAS  Google Scholar 

  37. An Q, Huang T, Shi F (2018) Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem Soc Rev 47:5061–5098

    Article  CAS  Google Scholar 

  38. Neto JBMR, Soares AC, Bataglioli RA, Carr O, Costa CAR, Oliveira ON, Beppu MM, Carvalho HF (2020) Polysaccharide multilayer films in sensors for detecting prostate tumor cells based on hyaluronan-CD44 interactions. Cells 9(6):1563

    Article  CAS  Google Scholar 

  39. Ariga K, Hill JP, Ji QM (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340

    Article  CAS  Google Scholar 

  40. Hsu BB, Hagerman SR, Hammond PT (2016) Rapid and efficient sprayed multilayer films for controlled drug delivery. J Appl Polymer Sci 133:43563

    Article  CAS  Google Scholar 

  41. Huang J, Qiu X, Yan B, Xie L, Yang JQ, Xu HL, Deng YH, Chen LY, Wang XG, Zeng HB (2018) Robust polymer nanofilms with bioengineering and environmental applications via facile and highly efficient covalent layer-by-layer assembly. J Mater Chem B 6:3742–3750

    Article  CAS  Google Scholar 

  42. Liu R, Dai JH, Ma LL, Chen JJ, Shi XW, Du YM, Li Z, Deng HB (2019) Low-temperature plasma treatment-assisted layer-by-layer self-assembly for the modification of nanofibrous mats. J Colloid Interface Sci 540:535–543

    Article  CAS  Google Scholar 

  43. Hyder MN, Kavian R, Sultana Z, Saetia K, Chen PY, Lee SW, Shao-Horn Y, Hammond PT (2014) Vacuum-assisted layer-by-layer nanocomposites for self-standing 3D mesoporous electrodes. Chem Mater 26:5310–5318

    Article  CAS  Google Scholar 

  44. Yin Q, Jia HB, Mohamed A, Ji QM, Hong L (2020) Highly flexible and mechanically strong polyaniline nanostructure @ aramid nanofiber films for free-standing supercapacitor electrodes. Nanoscale 12:5507–5520

    Article  CAS  Google Scholar 

  45. Park JK, Zhang JQ, Roy R, Ge SR, Hustad PD (2018) Polyelectrolyte multilayer-like films from layer-by-layer processing of protected polyampholytic block copolymers. Chem Commun 54:9478–9481

    Article  CAS  Google Scholar 

  46. Qu T, Guan S, Zheng XX, Chen AH (2020) Perpendicularly aligned nanodomains on versatile substrates via rapid thermal annealing assisted by liquid crystalline ordering in block copolymer films. Nanoscale Adv 2:1523–1530

    Article  CAS  Google Scholar 

  47. Dynarowicz-Latka P, Hac-Wydro K (2014) Edelfosine in membrane environment - the Langmuir monolayer studies. Anti Cancer Agents Med Chem 14:499–508

    Article  CAS  Google Scholar 

  48. Matyszewska D, Bilewicz R (2015) Interactions of daunorubicin with Langmuir-Blodgett thiolipid monolayers. Electrochim Acta 162:45–52

    Article  CAS  Google Scholar 

  49. Giner-Casares JJ, Brezesinski G, Mohwald H (2014) Langmuir monolayers as unique physical models. Curr Opin Colloid Interface Sci 19:176–182

    Article  CAS  Google Scholar 

  50. Girard-Egrot AP, Blum LJ (2007) Langmuir-Blodgett technique for synthesis of biomimetic membranes. In: Martin DK (ed) Nanobiotechnology of biomimetic membranes. Fundamental biomedical technologies. Springer, Boston, MA

    Google Scholar 

  51. Leblanc RM (2006) Molecular recognition at Langmuir monolayers. Curr Opin Chem Biol 10:529–536

    Article  CAS  Google Scholar 

  52. Caseli L, Pavinatto FJ, Nobre TM, Zaniquelli MED, Viitala T, Oliveira ON (2008) Chitosan as a removing agent of beta-lactoglobulin from membrane models. Langmuir 24:4150–4156

    Article  CAS  Google Scholar 

  53. da Rocha C, Caseli L (2017) Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films. Mater Sci Eng C Mater Biol Appl 73:579–584

    Article  CAS  Google Scholar 

  54. Moreira LG, Almeida AM, Camacho SA, Estevao BM, Oliveira ON, Aoki PHB (2020) Chain cleavage of bioinspired bacterial membranes photoinduced by eosin decyl ester. Langmuir 36:9578–9585

    Article  CAS  Google Scholar 

  55. Soares AC, Soares JC, Rodrigues VC, Oliveira ON, Mattoso LHC (2020) Controlled molecular architectures in microfluidic immunosensors for detecting Staphylococcus aureus. Analyst 145:6014–6023

    Article  CAS  Google Scholar 

  56. Stefaniu C, Brezesinski G (2014) X-ray investigation of monolayers formed at the soft air/water interface. Curr Opin Colloid Interface Sci 19:216–227

    Article  CAS  Google Scholar 

  57. Blaudez D, Castano S, Desbat B (2011) PM-IRRAS at liquid interfaces. Elsevier, Oxford

    Book  Google Scholar 

  58. Blaudez D, Turlet JM, Dufourcq J, Bard D, Buffeteau T, Desbat B (1996) Investigations at the air/water interface using polarization modulation IR spectroscopy. J Chem Soc Faraday Trans 92:525–530

    Article  CAS  Google Scholar 

  59. Hunt JH, Guyotsionnest P, Shen YR (1987) Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem Phys Lett 133:189–192

    Article  CAS  Google Scholar 

  60. Dynarowicz-Latka P, Dhanabalan A, Oliveira ON (2001) Modern physicochemical research on Langmuir monolayers. Adv Colloid Interf Sci 91:221–293

    Article  CAS  Google Scholar 

  61. Henon S, Meunier J (1991) Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers. Rev Sci Instrum 62:936–939

    Article  CAS  Google Scholar 

  62. Honig D, Mobius D (1992) Brewster angle microscopy of LB films on solid substrates. Chem Phys Lett 195:50–52

    Article  Google Scholar 

  63. Tharanathan RN, Kittur FS (2003) Chitin - the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87

    Article  CAS  Google Scholar 

  64. Fernandes ALP, Morais WA, Santos AIB, de Araujo AML, dos Santos DES, dos Santos DS, Pavinatto FJ, Oliveira ON, Dantas TNC, Pereira MR, Fonseca JLC (2005) The influence of oxidative degradation on the preparation of chitosan nanoparticles. Colloid Polym Sci 284:1–9

    Article  CAS  Google Scholar 

  65. Salmaso S, Bersani S, Semenzato A, Caliceti P (2006) Nanotechnologies in protein delivery. J Nanosci Nanotechnol 6:2736–2753

    Article  CAS  Google Scholar 

  66. Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20:175–182

    Article  CAS  Google Scholar 

  67. Pavinatto FJ, Caseli L, Pavinatto A, dos Santos DS, Nobre TM, Zaniquelli MED, Silva HS, Miranda PB, de Oliveira ON (2007) Probing chitosan and phospholipid interactions using Langmuir and Langmuir-Blodgett films as cell membrane models. Langmuir 23:7666–7671

    Article  CAS  Google Scholar 

  68. Wydro P, Krajewska B, Hac-Wydro K (2007) Chitosan as a lipid binder: a Langmuir monolayer study of chitosan-lipid interactions. Biomacromolecules 8:2611–2617

    Article  CAS  Google Scholar 

  69. Pereira AR, Fiamingo A, Pedro RO, Campana-Filho SP, Miranda PB, Oliveira ON Jr (2020) Enhanced chitosan effects on cell membrane models made with lipid raft monolayers. Colloids Surfaces B Interfaces 193:111017

    Article  CAS  Google Scholar 

  70. Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6

    Article  CAS  Google Scholar 

  71. Fiamingo A, Oliveira ON Jr, Campana-Filho SP (2020) Tuning the properties of high molecular weight chitosans to develop full water solubility within a wide pH range. ChemRxiv

    Google Scholar 

  72. Torrano AA, Pereira AS, Oliveira ON Jr, Barros-Timmons A (2013) Probing the interaction of oppositely charged gold nanoparticles with DPPG and DPPC Langmuir monolayers as cell membrane models. Colloids Surfaces B Biointerfaces 108:120–126

    Article  CAS  Google Scholar 

  73. Davies JT, Rideal EK (1963) Interfacial phenomena. Academic Press, New York

    Google Scholar 

  74. Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta Rev Biomembr 1286:183–223

    Article  CAS  Google Scholar 

  75. Camacho SA, Kobal MB, Almeida AM Jr, Toledo KA, Oliveira ON Jr, Aoki PHB (2020) Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B: Biointerfaces 194:111189

    Article  CAS  Google Scholar 

  76. Khomutov GB, Obydenov AY, Yakovenko SA, Soldatov ES, Trifonov AS, Khanin VV, Gubin SP (1999) Synthesis of nanoparticles in Langmuir monolayer. Mater Sci Eng C 8–9:309–318

    Article  Google Scholar 

  77. Khomutov GB, Gubin SP, Khanin VV, Koksharov AY, Obydenov AY, Shorokhov VV, Soldatov ES, Trifonov AS (2002) Formation of nanoparticles and one-dimensional nanostructures in floating and deposited Langmuir monolayers under applied electric and magnetic fields. Colloids Surf A Physicochem Eng Asp 198-200:593–604

    Article  CAS  Google Scholar 

  78. Matyszewska D, Napora E, Zelechowska K, Biernat JF, Bilewicz R (2018) Synthesis, characterization, and interactions of single-walled carbon nanotubes modified with doxorubicin with Langmuir-Blodgett biomimetic membranes. J Nanoparticle Res 20:143

    Article  CAS  Google Scholar 

  79. Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125:789–791

    Article  CAS  Google Scholar 

  80. Godoy S, Leca-Bouvier B, Boullanger P, Blum LJ, Girard-Egrot AP (2005) Electrochemiluminescent detection of acetylcholine using acetylcholinesterase immobilized in a biomimetic Langmuir-Blodgett nanostructure. Sensors Actuators B Chem 107:82–87

    Article  CAS  Google Scholar 

  81. Godoy S, Chauvet JP, Boullanger P, Blum LJ, Girard-Egrot AP (2003) New functional proteo-glycolipidic molecular assembly for biocatalysis analysis of an immobilized enzyme in a biomimetic nanostructure. Langmuir 19:5448–5456

    Article  CAS  Google Scholar 

  82. Chen BL, Ji F, Wang C, Gao Y, Zhou Z, Li Z, Cao HM, Hao LT, Liu GL, Liu JF, Liang Y (2019) Capture and elimination of Staphylococcus aureus based on Langmuir-Blodgett MnO2 nanowire monolayer promotes infected wound healing. J Mater Chem B 7:4198–4206

    Article  CAS  Google Scholar 

  83. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263

    Article  CAS  Google Scholar 

  84. Zanon NCM, Oliveira ON, Caseli L (2012) Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: possible use as a uric acid sensor. J Colloid Interface Sci 373:69–74

    Article  CAS  Google Scholar 

  85. Juers DH, Hakda S, Matthews BW, Huber RE (2003) Structural basis for the altered activity of Gly794 variants of Escherichia coli beta-galactosidase. Biochemistry 42:13505–13511

    Article  CAS  Google Scholar 

  86. Araujo FT, Peres LO, Caseli L (2019) Conjugated polymers blended with lipids and galactosidase as langmuir-Blodgett films to control the biosensing properties of nanostructured surfaces. Langmuir 35:7294–7303

    Article  CAS  Google Scholar 

  87. Bhatt G, Bhattacharya S (2019) Biosensors on chip: a critical review from an aspect of micro/nanoscales. J Micromanuf 2:198–219

    Article  Google Scholar 

  88. Qian LS, Li QB, Baryeh K, Qiu WW, Li K, Zhang J, Yu QC, Xu DQ, Liu WJ, Brand RE, Zhang XJ, Chen W, Liu GD (2019) Biosensors for early diagnosis of pancreatic cancer: a review. Transl Res 213:67–89

    Article  CAS  Google Scholar 

  89. Goldsmith BR, Locascio L, Gao YN, Lerner M, Walker A, Lerner J, Kyaw J, Shue A, Afsahi S, Pan D, Nokes J, Barron F (2019) Digital biosensing by foundry-fabricated graphene sensors. Sci Rep 9:434

    Article  CAS  Google Scholar 

  90. Rodrigues VC, Soares JC, Soares AC, Braz DC, Melendez ME, Ribas LC, Scabini LFS, Bruno OM, Carvalho AL, Reis RM, Sanfelice RC, Oliveira ON Jr (2021) Electrochemical and optical detection and machine learning applied to images of genosensors for diagnosis of prostate cancer with the biomarker PCA3. Talanta 222:121444

    Article  CAS  Google Scholar 

  91. Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma A, Pandit JK (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv 2014:670815

    Article  CAS  Google Scholar 

  92. Neves AF, Dias-Oliveira JDD, Araujo TG, Marangoni K, Goulart LR (2013) Prostate cancer antigen 3 (PCA3) RNA detection in blood and tissue samples for prostate cancer diagnosis. Clin Chem Lab Med 51:881–887

    Article  CAS  Google Scholar 

  93. Paulovich F, Moraes M, Maki R, Ferreira M, Oliveira O, de Oliveira M (2011) Information visualization techniques for sensing and biosensing. Analyst 136:1344–1350

    Article  CAS  Google Scholar 

  94. Kearney AJ, Murray M (2009) Breast cancer screening recommendations: is mammography the only answer? J Midwifery Womens Health 54:393–400

    Article  Google Scholar 

  95. Ren KF, Ji J, Shen JC (2006) Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films. Biomaterials 27:1152–1159

    Article  CAS  Google Scholar 

  96. Rusling JF (2004) Sensors for toxicity of chemicals and oxidative stress based on electrochemical catalytic DNA oxidation. Biosens Bioelectron 20:1022–1028

    Article  CAS  Google Scholar 

  97. Sano KI, Shiba K (2008) In aqua manufacturing of a three-dimensional nanostructure using a peptide aptamer. MRS Bull 33:524–529

    Article  CAS  Google Scholar 

  98. Sano KI, Shiba K (2008) Stepwise accumulation of layers of aptamer-ornamented ferritins using biomimetic layer-by-layer. J Mater Res 23:3236–3240

    Article  CAS  Google Scholar 

  99. Tombelli S, Minunni M, Mascini A (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  100. Du Y, Chen CG, Li BL, Zhou M, Wang EK, Dong SJ (2010) Layer-by-layer electrochemical biosensor with aptamer-appended active polyelectrolyte multilayer for sensitive protein determination. Biosens Bioelectron 25:1902–1907

    Article  CAS  Google Scholar 

  101. Soares AC, Soares JC, Shimizu FM, Melendez ME, Carvalho AL, Oliveira ON (2015) Controlled film architectures to detect a biomarker for pancreatic cancer using impedance spectroscopy. ACS Appl Mater Interfaces 7:25930–25937

    Article  CAS  Google Scholar 

  102. Imamura AH, Segato TP, de Oliveira LJM, Hassan A, Crespilho FN, Carrilho E (2020) Monitoring cellulose oxidation for protein immobilization in paper-based low-cost biosensors. Microchimica Acta 187:272

    Article  CAS  Google Scholar 

  103. Barratt J, Topham P (2007) Urine proteomics: the present and future of measuring urinary protein components in disease. Can Med Assoc J 177:361–368

    Article  Google Scholar 

  104. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898–911

    Article  CAS  Google Scholar 

  105. Ma W, Fu P, Sun MZ, Xu LG, Kuang H, Xu CL (2017) Dual quantification of MicroRNAs and telomerase in living cells. J Am Chem Soc 139:11752–11759

    Article  CAS  Google Scholar 

  106. Melo AFAA, Hassan A, Macedo LJA, Osica I, Shrestha LK, Ji QM, Oliveira ON, Henzie J, Ariga K, Crespilho FN (2019) Microwires of Au-Ag nanocages patterned via magnetic nanoadhesives for investigating proteins using surface enhanced infrared absorption spectroscopy. ACS Appl Mater Interfaces 11:18053–18061

    Article  CAS  Google Scholar 

  107. Neubrech F, Pucci A, Cornelius TW, Karim S, Garcia-Etxarri A, Aizpurua J (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101:157403

    Article  CAS  Google Scholar 

  108. Wu CH, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75

    Article  CAS  Google Scholar 

  109. Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. BBA Biomembranes 1828:2283–2293

    Article  CAS  Google Scholar 

  110. Oliveira D, Borges A, Simoes M (2018) Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10:252

    Article  CAS  Google Scholar 

  111. Jorgensen PS, Wernli D, Carroll SP, Dunn RR, Harbarth S, Levin SA, So AD, Schluter M, Laxminarayan R (2016) Use antimicrobials wisely. Nature 537:159–161

    Article  CAS  Google Scholar 

  112. Carrette L, Friedrich KA, Stimming U (2000) Fuel cells: principles, types, fuels, and applications. ChemPhysChem 1:162–193

    Article  CAS  Google Scholar 

  113. Park S, Wieckowski A, Weaver MJ (2003) Electrochemical infrared characterization of CO domains on ruthenium-decorated platinum nanoparticles. J Am Chem Soc 125:2282–2290

    Article  CAS  Google Scholar 

  114. Jia HY, Gao PC, Ma HM, Wu D, Du B, Wei Q (2015) Preparation of Au-Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22. Bioelectrochemistry 101:22–27

    Article  CAS  Google Scholar 

  115. Yang L, Zhao H, Fan SM, Deng SS, Lv Q, Lin J, Li CP (2014) Label-free electrochemical immunosensor based on gold-silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin. Biosens Bioelectron 57:199–206

    Article  CAS  Google Scholar 

  116. Manso J, Mena ML, Yanez-Sedeno P, Pingarron JM (2008) Bienzyme amperometric biosensor using gold nanoparticle-modified electrodes for the determination of inulin in foods. Anal Biochem 375:345–353

    Article  CAS  Google Scholar 

  117. Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MHO, Gobbi AL, Machado SAS, Oliveira ON (2016) A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: synergy in hybrid Pt/Au surfaces. Biosens Bioelectron 86:369–376

    Article  CAS  Google Scholar 

  118. Decher G (1996) Comprehensive supramolecular chemistry. In: Sauvage J-P, Housseini MW (eds) Templating, self-assembly and self-organization. Pergamon, Oxford, pp 507–528

    Google Scholar 

  119. Mrksich M (1997) Using self-assembled monolayers to understand the biomaterials interface. Curr Opin Colloid Interface Sci 2:83–88

    Article  CAS  Google Scholar 

  120. Ram MK, Bertoncello P, Ding H, Paddeu S, Nicolini C (2001) Cholesterol biosensors prepared by layer-by-layer technique. Biosens Bioelectron 16:849–856

    Article  CAS  Google Scholar 

  121. Ferreira M, Fiorito PA, Oliveira ON, de Torresi SIC (2004) Enzyme-mediated amperometric biosensors prepared with the layer-by-layer (LbL) adsorption technique. Biosens Bioelectron 19:1611–1615

    Article  CAS  Google Scholar 

  122. Wu KB, Fei JJ, Bai W, Hu SS (2003) Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem 376:205–209

    Article  CAS  Google Scholar 

  123. Palecek E, Fojta M, Tomschik M, Wang J (1998) Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron 13:621–628

    Article  CAS  Google Scholar 

  124. Wang F, Wu YJ, Liu JX, Ye BX (2009) DNA Langmuir-Blodgett modified glassy carbon electrode as voltammetric sensor for determinate of methotrexate. Electrochim Acta 54:1408–1413

    Article  CAS  Google Scholar 

  125. de Souza JCP, Iost RM, Crespilho FN (2015) Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes. Biosens Bioelectron 77:860–865

    Article  CAS  Google Scholar 

  126. Martins MVA, Pereira AR, Luz RAS, Iost RM, Crespilho FN (2014) Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes. Phys Chem Chem Phys 16:17426–17436

    Article  CAS  Google Scholar 

  127. Pereira AR, Luz RAS, Dalmati FCDA, Crespilho FN (2017) Protein oligomerization based on Brønsted acid reaction. ACS Catal 7:3082–3088

    Article  CAS  Google Scholar 

  128. Pagnoncelli K, Pereira A, Sedenho G, Bertaglia T, Crespilho F (2018) Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system. Bioelectrochemistry 122:11–25

    Article  CAS  Google Scholar 

  129. Crespilho FN, Iost RM, Travain SA, Oliveira ON, Zucolotto V (2009) Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosens Bioelectron 24:3073–3077

    Article  CAS  Google Scholar 

  130. Crespilho FN, Zucolotto V, Oliveira ON, Nart FC (2006) Electrochemistry of layer-by-layer films: a review. Int J Electrochem Sci 1:194–214

    CAS  Google Scholar 

  131. Zhao MQ, Crooks RM (1999) Dendrimer-encapsulated Pt nanoparticles: synthesis, characterization, and applications to catalysis. Adv Mater 11:217

    Article  CAS  Google Scholar 

  132. Siqueira JR, Crespilho FN, Zucolotto V, Oliveira ON (2007) Bifunctional electroactive nanostructured membranes. Electrochem Commun 9:2676–2680

    Article  CAS  Google Scholar 

  133. Iost RM, Sales FCPF, Martins MVA, Almeida MC, Crespilho FN (2015) Glucose biochip based on flexible carbon fiber electrodes: in vivo diabetes evaluation in rats. ChemElectroChem 2:518–521

    Article  CAS  Google Scholar 

  134. Koschwanez HE, Reichert WM (2007) In vitro, in vivo and post explantation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28:3687–3703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CAPES, CNPq, and FAPESP (2018/22214-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo N. Oliveira Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, A.R., Melo, A.F.A.A., Crespilho, F.N., Oliveira, O.N. (2022). Combining Polymers, Nanomaterials, and Biomolecules: Nanostructured Films with Functional Properties and Applications. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_19

Download citation

Publish with us

Policies and ethics