Skip to main content
Log in

Electron Transport in Single-Walled Carbon Nanotubes

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNTs) are emerging as an important new class of electronic materials. Both metallic and semiconducting SWNTs have electrical properties that rival or exceed the best metals or semiconductors known. In this article, we review recent transport and scanning probe experiments that investigate the electrical properties of SWNTs.We address the fundamental scattering mechanisms in SWNTs, both in linear response and at high bias.We also discuss the nature and properties of contacts to SWNTs. Finally, we discuss device performance issues and potential applications in electronics and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima and T. Ichihashi, Nature 363 (1993) p.603.

    Google Scholar 

  2. D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363 (1993) p. 605.

    Google Scholar 

  3. S.J. Tans, M.H. Devoret, H. Dau, A. Thess, R.E. Smalley, L.J. Georliga, and C. Dekker, Nature 386 (1997) p. 474.

    Google Scholar 

  4. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, and R.E. Smalley, Science 275 (1997) p. 1922.

    Google Scholar 

  5. S.J. Tans, R.M. Verschueren, and C. Dekker, Nature 393 (1998) p. 49.

    Google Scholar 

  6. P.L. McEuen, M.S. Fuhrer, and H.K. Park, IEEE Trans. Nanotech. 1 (2002) p. 78.

    Google Scholar 

  7. C. Dekker, Physics Today 52 (1999) p. 22.

    Google Scholar 

  8. P. Avouris, Acc. Chem. Res. 35 (2002) p. 1026.

    Google Scholar 

  9. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  10. J. Nygård, D.H. Cobden, M. Bockrath, P.L. McEuen, and P.E. Lindelof, Appl. Phys. A 69 (1999) p. 297.

    Google Scholar 

  11. Z. Yao, C. Dekker, and P. Avouris, in Topics in Applied Physics, Vol. 80, edited by M.S. Dresselhaus, G. Dresselhaus, and P. Avouris (Springer-Verlag, Berlin, 2001) p. 147.

  12. W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, and H. Park, Nature 411 (2001) p. 665.

    Google Scholar 

  13. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dau, R.B. Laughlin, L. Liu, C.S. Jayanthi, and S.Y. Wu, Phys. Rev. Lett. 87 106801 (2001).

  14. A. Bachtold, M.S. Fuhrer, S. Plyasunov, M. Forero, E.H. Anderson, A. Zettl, and P.L. McEuen, Phys. Rev. Lett. 84 (2000) p. 6082.

    Google Scholar 

  15. C.L. Kane, E.J. Mele, R.S. Lee, J.E. Fischer, P. Petit, H. Dau, A. Thess, R.E. Smalley, A.R.M. Verschueren, S.J. Tans, and C. Dekker, Europhys. Lett. 41 (1998) p. 683.

    Google Scholar 

  16. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dau, Phys. Rev. Lett. 92 106804 (2004).

  17. J.-Y. Park, S. Rosenblatt, Y. Yaush, V. Sazonova, H. Üstünel, S. Braug, T.A. Arias, P.W. Brouwer, and P.L. McEuen, Nano Lett. 4 (2004) p. 517.

    Google Scholar 

  18. Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett. 84 (2000) p. 2941.

    Google Scholar 

  19. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H J. Dau, Nature 424 (2003) p. 654.

    Google Scholar 

  20. Y. Yaush, J.-Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, and P.L. McEuen, Phys. Rev. Lett. 92 046401 (2004).

  21. D.H. Cobden, M. Bockrath, P.L. McEuen, A.G. Rinzler, and R.E. Smalley, Phys. Rev. Lett. 81 (1998) p. 681.

    Google Scholar 

  22. T. Dürkop, T. Brintlinger, and M.S. Fuhrer, in Structural and Electronic Properties of Molecular Nanostructures, AIP Conf. Proc. 633, edited by H. Kuzmany, J. Fink, M. Mehring, and S. Roth (American Institute of Physics, New York, 2002) p.242.

  23. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73 (1998) p. 2447.

    Google Scholar 

  24. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and P. Avouris, Phys. Rev. Lett. 87 256805 (2001).

  25. P.L. McEuen, M. Bockrath, D.H. Cobden, Y.-G. Yoon, and S.G. Louie, Phys. Rev. Lett. 83 (1999) p. 5098.

    Google Scholar 

  26. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294 (2001) p. 1317.

    Google Scholar 

  27. J. Park and P.L. McEuen, Appl. Phys. Lett. 79 (2001) p. 1363.

    Google Scholar 

  28. A. Javey, M. Shim, and H. Dau, Appl. Phys. Lett. 80 (2002) p. 1064.

    Google Scholar 

  29. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, Phys. Rev. Lett. 89 106801 (2002).

  30. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, Phys. Rev. Lett. 89 126801 (2002).

  31. R.J. Chen, N.R. Franklin, K. Jing, C. Jien, T.W. Tombler, Z. Yuegang, and H. Dau, Appl. Phys. Lett. 79 (2001) p. 2258.

    Google Scholar 

  32. W. Kim, A. Javey, O. Vermesh, O. Wang, Y.M. Li, and H.J. Dau, Nano Lett. 3 (2003) p. 193.

    Google Scholar 

  33. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dau, Science 287 (2000) p. 622.

    Google Scholar 

  34. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287 (2000) p. 1801.

    Google Scholar 

  35. M. Bockrath, J. Hone, A. Zettl, P.L. McEuen, A.G. Rinzler, and R.E. Smalley, Phys. Rev. B 61 (2000) p. R10606.

  36. J. Kong, C. Zhou, Y.E., and H. Dau, Appl. Phys. Lett. 77 (2000) p. 3977.

    Google Scholar 

  37. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris, Nano Lett. 1 (2001) p. 453.

    Google Scholar 

  38. C. Zhou, J. Kong, E. Yenilmez, and H. Dau, Science 290 (2000) p. 1552.

    Google Scholar 

  39. J. Kong, J. Cao, and H. Dau, Appl. Phys. Lett. 80 (2002) p. 73.

    Google Scholar 

  40. J. Kong and H. Dau, J. Phys. Chem. B 105 (2001) p. 2890.

    Google Scholar 

  41. M. Kruger, M.R. Buitelaar, T. Nussbaumer, C. Schonenberger, and L. Forro, Appl. Phys. Lett. 78 (2001) p. 1291.

    Google Scholar 

  42. S. Rosenblatt, Y. Yaush, J. Park, J. Gore, V. Sazonova, and P.L. McEuen, Nano Lett. 2 (2002) p.869.

    Google Scholar 

  43. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H.J. Dau, Nat. Mater. 1 (2002) p.241.

    Google Scholar 

  44. K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, and C. Dekker, Nano Lett. 3 (2003) p.727.

    Google Scholar 

  45. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li, W. Kim, P.J. Utz, and H. Dau, in PNAS: Proc. Natl. Acad. Sci. U.S.A. 100 (2003) p. 4984.

    Google Scholar 

  46. A. Star, J.C.P. Gabriel, K. Bradley, and G. Gruner, Nano Lett. 3 (2003) p. 459.

    Google Scholar 

  47. Z. Yao, H.W. C. Postma, L. Balents, and C. Dekker, Nature 402 (1999) p. 273.

    Google Scholar 

  48. J. Lefebvre, R.D. Antonov, M. Radosavljevic, J.F. Lynch, M. Llaguno, and A.T. Johnson, Carbon 38 (2000) p. 1745.

    Google Scholar 

  49. M.S. Fuhrer, J. Nygård, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, and P.L. McEuen, Science 288 (2000) p. 494.

    Google Scholar 

  50. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, and C.M. Lieber, Science 289 (2000) p. 94.

    Google Scholar 

  51. T.W. Tombler, Z. Chongwu, L. Alexseyev, K. Jing, D. Hongjie, L. Lei, C.S. Jayanthi, T. Meijie, and W. Shi-Yu, Nature 405 (2000) p. 769.

    Google Scholar 

  52. J. Cao, Q. Wang, and H.J. Dau, Phys. Rev. Lett. 90 157601 (2003).

  53. E.D. Minot, Y. Yaush, V. Sazonova, J.-Y. Park, M. Brink, and P.L. McEuen, Phys. Rev. Lett. 90 156401 (2003).

  54. C.L. Cheung, A. Kurtz, H. Park, and C.M. Lieber, J. Phys. Chem. B 106 (2002) p. 2429.

    Google Scholar 

  55. S.M. Huang, X.Y. Cau, and J. Liu, J. Am. Chem. Soc. 125 (2003) p. 5636.

    Google Scholar 

  56. S. Fan, W. Liang, H. Dang, N. Franklin, T. Tombler, M. Chapline, and H. Dau, Physica E 8 (2000) p. 179.

    Google Scholar 

  57. R. Krupke, F. Hennrich, H. von Lohneysen, and M.M. Kappes, Science 301 (2003) p. 344.

    Google Scholar 

  58. M.S. Strano, C.B. Huffman, V.C. Moore, M.J. O’Connell, E.H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R.H. Hauge, and R.E. Smalley, J. Phys. Chem. B 107 (2003) p. 6979.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEuen, P.L., Park, JY. Electron Transport in Single-Walled Carbon Nanotubes. MRS Bulletin 29, 272–275 (2004). https://doi.org/10.1557/mrs2004.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.79

Keywords

Navigation