Skip to main content
Log in

The Role of Nanoscale Forces in Colloid Dispersion Rheology

  • Material Matters
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Advances in our fundamental understanding of and control over interparticle colloidal forces have enhanced our ability to formulate stable, complex fluids with colloidal and/or nano-sized particles with specific rheological properties. This understanding stems from advances in experimental methods that probe these forces, either directly or indirectly, as well as theoretical treatments and simulation methods linking macroscopic suspension properties to the dynamics and interactions between colloidal particles. This article highlights recent experimental developments in the structure-property relationships for colloidal dispersions, with emphasis on the sensitivity of colloid rheology to nanometer-scale interactions. Examples of applications are used to illustrate these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Hunter, Foundations of Colloid Science I (Clarendon Press, Oxford, 1986).

    Google Scholar 

  2. W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, New York, 1989).

    Google Scholar 

  3. R.A. Lionberger and W.B. Russel, Adv. Chem. Phys. 111 (2000) p. 399.

    Google Scholar 

  4. J.F. Brady, J. Chem. Phys. 99 (1993) p. 567.

    Google Scholar 

  5. G. Naegele, J. Phys.: Condens. Matter 15 (2003) p. S407.

    Google Scholar 

  6. W.H. Boersma, J. Laven, and H.N. Stein, AIChE J. 36 (1990) p. 321.

    Google Scholar 

  7. J.W. Bender and N.J. Wagner, J. Rheol. 40 (1996) p. 899.

    Google Scholar 

  8. B.J. Maranzano and N.J. Wagner, J. Chem. Phys. 114 (2001) p. 10514.

    Google Scholar 

  9. I.M. Krieger and T.J. Dougherty, Trans. Soc. Rheol. 3 (1959) p. 137.

    Google Scholar 

  10. D. Quemada, Rheol. Acta 16 (1977) p. 82.

    Google Scholar 

  11. Z. Cheng, J.X. Zhu, P.M. Chaikin, S.E. Phan, and W.B. Russel, Phys. Rev. E 65041405 (2002).

    Google Scholar 

  12. J.W. Bender and N.J. Wagner, J. Colloid Interface Sci. 172 (1995) p. 171.

    Google Scholar 

  13. R. Zwanzig and R.D. Mountain, J. Chem. Phys. 43 (1965) p. 4464.

    Google Scholar 

  14. N.J. Wagner, J. Colloid Interface Sci. 161 (1993) p. 169.

    Google Scholar 

  15. R.A. Lionberger and W.B. Russel, J. Rheol. 38 (1994) p. 1885.

    Google Scholar 

  16. G. Fritz, W. Pechhold, N. Willenbacher, and N.J. Wagner, J. Rheol. 47 (2003) p. 303.

    Google Scholar 

  17. J. Bergenholtz, N. Willenbacher, N.J. Wagner, B. Morrison, D. van den Ende, and J. Mellema, J. Colloid Interface Sci. 202 (1998) p. 430.

    Google Scholar 

  18. F.M. Horn, W. Richtering, J. Bergenholtz, N. Willenbacher, and N.J. Wagner, J. Colloid Interface Sci. 225 (2000) p. 166.

    Google Scholar 

  19. J. Bergenholtz, F.M. Horn, W. Richtering, N. Willenbacher, and N.J. Wagner, Phys. Rev. E 58 (1998) p. R4088.

    Google Scholar 

  20. G. Fritz, B.J. Maranzano, N.J. Wagner, and N. Willenbacher, J. Non-Newtonian Fluid Mech. 102 (2002) p. 149.

    Google Scholar 

  21. G. Fritz, V. Schadler, and N. Willenbacher, Langmuir 18 (2002) p. 6381.

    Google Scholar 

  22. E. Fischer, Kolloid-Z. 160 (1958) p. 120.

    Google Scholar 

  23. B. Vincent, J. Edwards, S. Emment, and A. Jones, Colloids Surf. 18 (1986) p. 261.

    Google Scholar 

  24. S.L. Elliott and W.B. Russel, J. Rheol. 42 (1998) p. 361.

    Google Scholar 

  25. P.A. Nommensen, M.H.G. Duits, D. Ende van den, and J. Mellema, Langmuir 16 (2000) p. 1902.

    Google Scholar 

  26. C.L.A. Berli and D. Quemada, Langmuir 16 (2000) p. 7968.

    Google Scholar 

  27. I. Deike and M. Ballauff, J. Rheol. 45 (2001) p. 709.

    Google Scholar 

  28. A. Einstein, Investigations on the Theory of Brownian Motion, edited by R. Fürth (Dover Publications, New York, 1956).

    Google Scholar 

  29. H.J. Wilson and R.H. Davis, J. Fluid Mech. 452 (2002) p. 425.

    Google Scholar 

  30. C. Blom and J. Mellema, Rheol. Acta 23 (1984) p. 98.

    Google Scholar 

  31. J.C. van der Werff, C.G. Kruif de, C. Blom, and J. Mellema, Phys. Rev. A 39 (1989) p. 795.

    Google Scholar 

  32. T. Shikata and D.S. Pearson, J. Rheol. 38 (1994) p. 601.

    Google Scholar 

  33. B.J. Maranzano, N.J. Wagner, G. Fritz, and O. Glatter, Langmuir 16 (2000) p. 10556.

    Google Scholar 

  34. B.J. Maranzano and N.J. Wagner, J. Rheol. 45 (2001) p. 1205.

    Google Scholar 

  35. M.E. Mackay, T.T. Dao, A. Tuteja, D.L. Ho, B. Van Horn, H.-C. Kim, and C.J. Hawker, Nat. Mater. 2 (2003) p. 763.

    Google Scholar 

  36. J.F. Brady and G. Bossis, Annu. Rev. Fluid Mech. 20 (1988) p. 111.

    Google Scholar 

  37. M.C. Newstein, H. Wang, N.P. Balsara, A.A. Lefebvre, Y. Schnidman, H. Watanabe, K. Osaki, T. Shikata, H. Niwa, and Y. Morishima, J. Chem. Phys. 111 (1999) p. 4827.

    Google Scholar 

  38. D’P. Haene, J. Mewis, and G. Fuller, J. Colloid Interface Sci. 156 (1993) p. 350.

    Google Scholar 

  39. B.J. Maranzano and N.J. Wagner, J. Chem. Phys. 117 (2002) p. 10291.

    Google Scholar 

  40. H.M. Laun, R. Bung, S. Hess, W. Loose, O. Hess, K. Hahn, HäE. dicke, R. Hingmann, F. Schmidt, and P. Lindner, J. Rheol. 36 (1992) p. 743.

    Google Scholar 

  41. R.L. Hoffmann, Trans. Soc. Rheol. 16 (1972) p. 155.

    Google Scholar 

  42. S.S. Shenoy, N.J. Wagner, and J.W. Bender, Rheol. Acta 42 (2003) p. 287.

    Google Scholar 

  43. Y.S. Lee, E.D. Wetzel, and N.J. Wagner, J. Mater. Sci. 38 (2003) p. 2825.

    Google Scholar 

  44. J.R. Melrose, Faraday Discuss. 123 (2002) p. 355.

    Google Scholar 

  45. J.R. Melrose, J.H. Vliet van, and R.C. Ball, Phys. Rev. Lett. 77 (1996) p. 4660.

    Google Scholar 

  46. J. Bergenholtz, J.F. Brady, and M. Vicic, J. Fluid Mech. 456 (2002) p. 239.

    Google Scholar 

  47. Y.S. Lee and N.J. Wagner, unpublished manuscript.

  48. S.G. Bike, Curr. Opin. Colloid Interface Sci. 5 (2000) p. 144.

    Google Scholar 

  49. D.C. Prieve, Adv. Colloid Interface Sci. 82 (1999) p. 95.

    Google Scholar 

  50. X. Zhang, M. Wilhelm, J. Klein, M. Pfaadt, and E.W. Meijer, Langmuir 16 (2000) p. 3884.

    Google Scholar 

  51. S.M. Kilbey, H. Watanabe, and M.V. Tirrell, Macromolecules 34 (2001) p. 5249.

    Google Scholar 

  52. M. Balastre, F. Li, P. Schorr, J. Yang, J.W. Mays, and M.V. Tirrell, Macromolecules 35 (2002) p. 9480.

    Google Scholar 

  53. J. Peanasky, L. Cai, S. Granick, and C.R. Kessel, Langmuir 10 (1994) p. 3874.

    Google Scholar 

  54. G. Reiter, A.L. Demirel, and S. Granick, Science 263 (1994) p. 1741.

    Google Scholar 

  55. H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97 (1993) p. 11300.

    Google Scholar 

  56. S. Granick and H. Hu-W., Langmuir 10 (1994) p. 3857.

    Google Scholar 

  57. N.C. Woodward, M.J. Snowden, B.Z. Chowdry, P. Jenkins, and I. Larson, Langmuir 18 (2002) p. 2089.

    Google Scholar 

  58. S. Zauscher and D.J. Klingenberg, Colloids Surf., A 178 (2001) p. 213.

    Google Scholar 

  59. S. Zauscher and D.J. Klingenberg, J. Colloid Interface Sci. 229 (2000) p. 497.

    Google Scholar 

  60. M.N. Notley, S. Biggs, and V. Craig, Macromolecules 36 (2003) p. 2903.

    Google Scholar 

  61. V. Craig and C. Neto, Langmuir 17 (2001) p. 6018.

    Google Scholar 

  62. G.J.C. Braithewaite, A.M. Howe, and P.F. Luckham, Langmuir 12 (1996) p. 4224.

    Google Scholar 

  63. E.M. Furst, Soft Matter 1 (2003) p. 165.

    Google Scholar 

  64. E.M. Furst and A.P. Gast, Phys. Rev. E 61 (2000) p. 6732.

    Google Scholar 

  65. L.A. Hough and Ou-H.D. Yang, Phys. Rev. E 65021906 (2002).

    Google Scholar 

  66. M. Bevan and D. Prieve, Langmuir 15 (1999) p. 7925.

    Google Scholar 

  67. K. Sakai, T. Yoshimura, and K. Esumi, Langmuir 19 (2003) p. 1203.

    Google Scholar 

  68. A. Ashkin, Biophys. J. 61 (1992) p. 569.

    Google Scholar 

  69. T.G. Mason and D.A. Weitz, Phys. Rev. Lett. 74 (1995) p. 1250.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, N.J., Bender, J.W. The Role of Nanoscale Forces in Colloid Dispersion Rheology. MRS Bulletin 29, 100–106 (2004). https://doi.org/10.1557/mrs2004.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.36

Keywords

Navigation