Skip to main content

Aggregation and Deformation Induced Reorganisation of Colloidal Suspension

  • Chapter
  • First Online:
Colloid Process Engineering

Abstract

Various mechanisms can lead to colloidal aggregation. Attractive interactions being the most prominent amongst them. In this chapter we describe the synthesis of well defined colloids with a smooth or rough surface, their mechanical characterization, controlled aggregation and the study of the mechanical and structural properties of the colloids and the formed aggregates. Depending on the interplay between the properties of the single colloids, the interactions between the colloids and the structure formed by the colloids, the macroscopic response of the system can greatly change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lekkerkerker H, Poon W, Pusey P, Stroobants A, Warren P (1992) Phase behaviour of colloid + polymer mixtures. Europhys Lett 20:559

    Article  Google Scholar 

  2. Gasser U, Weeks ER, Schofield A, Pusey PN, Weitz DA (2001) Real-space imaging of nucleation and growth in colloidal crystallization. Science 292:258

    Article  Google Scholar 

  3. Pham KN, Egelhaaf SU, Pusey PN, Poon WCK (2004) Glasses in hard spheres with short-range attraction. Phys Rev E 69(1): 011503

    Google Scholar 

  4. Verhaegh NAM, Blaaderen Av (1994) Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir 10(5):1427

    Article  Google Scholar 

  5. Goodwin JW, Hearn J, Ho CC, Ottewill RH (1974) Studies on the preparation and characterisation of monodisperse polystyrene laticee. Colloid Polym Sci 252(6):464

    Article  Google Scholar 

  6. Kim JW, Larsen RJ, Weitz DA (2006) Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc 128(44):14374

    Article  Google Scholar 

  7. Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128(29):9408

    Article  Google Scholar 

  8. Walther A, Mueller AHE (2008) Janus particles. Soft Matter 4(4):663

    Article  Google Scholar 

  9. Pawar AB, Kretzschmar I (2010) Fabrication, assembly, and application of patchy particles. Macromol Rapid Commun 31(2):150

    Article  Google Scholar 

  10. Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS (2006) Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 5(5):365

    Article  Google Scholar 

  11. Schwedes J (2003) Review on testers for measuring flow properties of bulk solids. Granular Matter 5(1):1

    Article  Google Scholar 

  12. van Blaaderen A (2003) Colloidal molecules and beyond. Science 301(5632):470

    Article  Google Scholar 

  13. Schall P, Cohen I, Weitz DA, Spaepen F (2004) Visualization of dislocation dynamics in colloidal crystals. Science 305(5692):1944

    Article  Google Scholar 

  14. Aarts DGAL, Schmidt M, Lekkerkerker HNW (2004) Direct visual observation of thermal capillary waves. Science 304:847

    Article  Google Scholar 

  15. Besseling R, Weeks ER, Schofield AB, Poon WCK (2007) Three-dimensional imaging of colloidal glasses under steady shear. Phys Rev Lett 99(2):028301

    Article  Google Scholar 

  16. Tsai JC, Voth GA, Gollub JP (2003) Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys Rev Lett 91(6):064301

    Article  Google Scholar 

  17. Gao Y, Haavisto S, Tang CY, Salmela J, Li W (2013) Characterization of fluid dynamics in spacer-filled channels for membrane filtration using doppler optical coherence tomography. J Membr Sci 448:198

    Article  Google Scholar 

  18. Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21:1261

    Google Scholar 

  19. Scheel M, Seemann R, Brinkmann M, Di Michiel M, Sheppard A, Breidenbach B, Herminghaus S (2008) Morphological clues to wet granular pile stability. Nat Mater 7(3):189

    Article  Google Scholar 

  20. Weon BM, Lee JS, Kim JT, Pyo J, Je JH (2012) Colloidal wettability probed with X-ray microscopy. Curr Opin Colloid Interface Sci 17(6):388

    Article  Google Scholar 

  21. Cierpka C, Kähler CJ (2012) Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis 15(1):1

    Article  Google Scholar 

  22. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298

    Article  Google Scholar 

  23. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627

    Article  Google Scholar 

  24. Videla A, Lin CL, Miller JD (2006) Watershed functions applied to a 3D image segmentation problem for the analysis of packed particle beds. Part Syst Charact 23(3–4):237

    Article  Google Scholar 

  25. Al-Raoush R (2007) Microstructure characterization of granular materials. Physica A 377(2):545

    Article  Google Scholar 

  26. Wenzl J, Seto R, Roth M, Butt HJ, Auernhammer G (2013) Measurement of rotation of individual spherical particles in cohesive granulates. Granular Matter 15(4):391

    Article  Google Scholar 

  27. Chao WL, Harteneck BD, Liddle JA, Anderson EH, Attwood DT (2005) Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435:12100

    Article  Google Scholar 

  28. Araki T, Ade H, Stubbs JM, Sundberg DC, Mitchell GE (2006) Resonant soft x-ray scattering from structured polymer nanoparticles. App Phys Lett 89:124106

    Article  Google Scholar 

  29. Auernhammer GK, Fauth K, Ullrich B, Zhao J, Weigand M, Vollmer D (2009) Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear. J Synchrot Radiat 16:308. doi:10.1107/S0909049509000314

    Article  Google Scholar 

  30. Auernhammer GK, Collin D, Martinoty P (2006) Viscoelasticity of suspensions of magnetic particles in a polymer: effect of confinement and external field. J Chem Phys 124:204907

    Article  Google Scholar 

  31. D’Acunzi M, Mammen L, Singh M, Deng X, Roth M, Auernhammer GK, Butt HJ, Vollmer D (2010) Superhydrophobic surfaces by hybrid raspberry-like particles. Faraday Discuss 146:35

    Article  Google Scholar 

  32. Zhang L, D’Acunzi M, Kappl M, Auernhammer GK, Vollmer D, van Kats CM, van Blaaderen A (2009) Hollow silica spheres: synthesis and mechanical properties. Langmuir 25(5):2711

    Article  Google Scholar 

  33. Furusawa K, Norde W, Lyklema J (1972) Method for preparing surfactant-free polystyrene latices of high surface charge. Kolloid-Z u Z Polymere 250(9):908

    Article  Google Scholar 

  34. D'Acunzi M (2010) Core-shell particles and their application for superhydrophobic surfaces. Ph.D. thesis, University Mainz

    Google Scholar 

  35. Reynhout XEE, Hoekstra L, Meuldijk J, Drinkenburg AAH (2003) Contribution of steric and electrostatic repulsion forces to the stability of styrene latices copolymerized with acrylic acid. J Polymer Sci Part Polymer Chem 41(19):2985

    Article  Google Scholar 

  36. Reynhout XEE, Beckers M, Meuldijk A, Drinkenburg BAH (2005) Electrosteric stability of styrene/acrylic acid copolymer latices under emulsion polymerization reaction conditions. J Polymer Sci Part Polymer Chem 43(4):726

    Article  Google Scholar 

  37. Shouldice GTD, Vandezande GA, Rudin A (1994) Practical aspects of the emulsifier-free emulsion polymerization of styrene. Eur Polymer J 30(2):179

    Article  Google Scholar 

  38. Ottewill RH, Shaw JN (1967) Studies on the preparation and characterization of monodisperse polystyrene latices. Kolloid-Z u Z Polymere 215(2):161

    Google Scholar 

  39. Musyanovych A, Rossmanith R, Tontsch C, Landfester K (2007) Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl- and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. Langmuir 23(10):5367

    Article  Google Scholar 

  40. Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2009) A general method to coat colloidal particles with silica. Langmuir 19:6693

    Google Scholar 

  41. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62

    Article  Google Scholar 

  42. van Blaaderen A, Kentgens APM (1992) Controlled growth of monodisperse silica spheres in the micron size range. J Non-Cryst Solids 149(3):161

    Article  Google Scholar 

  43. Zhang L, D’Acunzi M, Kappl M, Imhof A, van Blaaderen A, Butt HJ, Graf R, Vollmer D (2010) Tuning the mechanical properties of silica microcapsules. Phys Chem Chem Phys 12(47):15392

    Article  Google Scholar 

  44. Butt H, Graf K, Kappl M (2006) Physics and chemistry of interfaces. Wiley, Weinheim

    Google Scholar 

  45. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1

    Article  Google Scholar 

  46. Fery A, Weinkamer R (2007) Mechanical properties of micro- and nanocapsules: single-capsule measurements. Polymer 48(25):7221

    Article  Google Scholar 

  47. Adachi T, Sakka S (1990) Dependence of the elastic moduli of porous silica gel prepared by the sol-gel method on heat-treatment. J Mat Sci 25(11):4732

    Article  Google Scholar 

  48. Engelhardt DMG (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chinchester

    Google Scholar 

  49. Marsmann HC, Raml W, Hengge E (1980) 29Si NMR Measurements on polysilanes. 2. Isotetrasilanes. Z. Naturforsch B 35(12):1541

    Google Scholar 

  50. Deng X, Mammen L, Zhao Y, Lellig P, Muellen K, Li C, Butt HJ, Vollmer D (2011) Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv Mater 23(26):2962

    Article  Google Scholar 

  51. Nagao D, van Kats CM, Hayasaka K, Sugimoto M, Konno M, Imhof A, van Blaaderen A (2010) Synthesis of hollow asymmetrical silica dumbbells with a movable inner core. Langmuir 26(7):5208

    Article  Google Scholar 

  52. Meeker SP, Poon WCK, Crain J, Terentjev EM (2000) Colloid-liquid-crystal composites: an unusual soft solid. Phys Rev E 61(6):R6083

    Article  Google Scholar 

  53. Vollmer D, Hinze G, Ullrich B, Poon WCK, Cates ME, Schofield AB (2005) Formation of self-supporting reversible cellular networks in suspensions of colloids and liquid crystals. Langmuir 21:4921

    Article  Google Scholar 

  54. Anderson VJ, Terentjev EM, Meeker SP, Crain J, Poon WCK (2001) Cellular solid behaviour of liquid crystal colloids 1. phase separation and morphology. Eur Phys J E 4:11

    Google Scholar 

  55. Bosma G, Pathmamanoharan C, de Hoog EHA, Kegel WK, van Blaaderen A, Lekkerkerker HNW (2002) Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. J Colloid Interface Sci 245(2):292

    Article  Google Scholar 

  56. Stark H (2001) Physics of colloidal dispersions in nematic liquid crystals. Phys Rep 351(6):387

    Article  Google Scholar 

  57. Terentjev EM (1995) Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys Rev E 51(2):1330

    Google Scholar 

  58. Anderson VJ, Terentjev EM (2001) Cellular solid behaviour of liquid crystal colloids 2. mechanical properties. Eur Phys J E 4(1):21

    Article  Google Scholar 

  59. Bartolino R, Durand G (1977) Plasticity in smectic-A liquid crystal. Phys Rev Lett 39(21):1346

    Article  Google Scholar 

  60. Yamamoto Y, Nakamura H, Okano K (1986) Apparatus for measurement of complex shear modulus of liquid crystaks at low frequencies. Jap J Appl Phys 26–1:29

    Google Scholar 

  61. Martinoty P, Gallani J, Collin D (1998) Hydrodynamic and nonhydrodynamic behavior of layer-compression modulus B at the nematic-smectic- A phase transition in 8OCB. Phys Rev Lett 81:144

    Article  Google Scholar 

  62. Roth M, D’Acunzi M, Vollmer D, Auernhammer GK (2010) Viscoelastic rheology of colloid-liquid crystal composites. J Chem Phys 132:124702

    Article  Google Scholar 

  63. Roth M (2012) Rheology of arrested colloids: a parameter study using novel experimental methods. PhD thesis, Universität Mainz. http://ubm.opus.hbz-nrw.de/volltexte/2012/3009/

  64. West JL (1988) Phase separation of liquid crystals in polymers. Mol Cryst Liq Cryst Inc Nonlin Opt 157:427

    Google Scholar 

  65. West JL (1990) Polymer-dispersed liquid crystals. Liquid-Crystalline Polymers 435:475–495

    Google Scholar 

  66. Coates D (1995) Polymer-dispersed liquid crystals. J Mater Chem 5(12):2063

    Article  Google Scholar 

  67. Frenkel D (2002) Playing tricks with designer “atoms”. Science 296:65

    Article  Google Scholar 

  68. Schall P, Cohen I, Weitz DA, Spaepen F (2006) Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440:319

    Article  Google Scholar 

  69. Brader JM, Voigtmann T, Fuchs M, Larson RG, Cates ME (2009) Glass rheology: from mode-coupling theory to a dynamical yield criterion. Proc Natl Acad Sci 106(36):15186

    Article  Google Scholar 

  70. Brader JM, Siebenbürger M, Ballauff M, Reinheimer K, Wilhelm M, Frey SJ, Weysser F, Fuchs M (2010) Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and fourier transform rheology experiments. Phys Rev E 82(6):061401

    Article  Google Scholar 

  71. Zaccone A, Soos M, Lattuada M, Wu H, Babler MU, Morbidelli M (2009) Breakup of dense colloidal aggregates under hydrodynamic stresses. Phys Rev E 79(6):061401

    Google Scholar 

  72. Schilde C, Kampen I, Kwade A (2010) Dispersion kinetics of nano-sized particles for different dispersing machines. Chem Eng Sci 65(11):3518

    Article  Google Scholar 

  73. Schilde C, Breitung-Faes S, Kampen I, Kwade A (2013) Grinding kinetics of nano-sized particles for different electrostatic stabilizing acids in a stirred media mill. Powder Technol 235:1008

    Article  Google Scholar 

  74. Schilde C, Gothsch T, Quarch K, Kind M, Kwade A (2009) Effect of important precipitation process parameters on the redispersion process and the micromechanical properties of precipitated silica. Chem Eng Techn 32(7):1078

    Article  Google Scholar 

  75. Roth M, Schilde C, Lellig P, Kwade A, Auernhammer GK (2012) Colloidal aggregates tested via nanoindentation and simultaneous 3D imaging. Eur Phys J E 35:124

    Article  Google Scholar 

  76. Chen D, Semwogerere D, Sato J, Breedveld V, Weeks ER (2010) Microscopic structural relaxation in a sheared supercooled colloidal liquid. Phys Rev E 81(1):011403

    Article  Google Scholar 

  77. Roth M, Schilde C, Lellig P, Kwade A, Auernhammer GK (2012) Simultaneous nanoindentation and 3D imaging on semicrystalline colloidal films. Chem Lett 41(10):1110

    Article  Google Scholar 

  78. Steinhardt PJ, Nelson DR, Ronchetti M (1983) Bond-orientational order in liquids and glasses. Phys Rev B 28:784

    Google Scholar 

  79. Lechner W, Dellago C (2008) Accurate determination of crystal structures based on averaged local bond order parameters.. J Chem Phys 129

    Google Scholar 

  80. Oliver WC, Pharr GM (1992) An improved method for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564

    Article  Google Scholar 

  81. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodolgy. J Mater Res 19:3

    Article  Google Scholar 

  82. Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73:614

    Article  Google Scholar 

  83. Malzbender J, de With G (2000) Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials. Surf Coat Technol 135:60

    Article  Google Scholar 

  84. Bartali R, Michelia V, Gottardia G, Vaccaria A, Laidania N (2010) Nanoindentation: unload-to-load work ratio analysis in amorphous carbon films for mechanical properties. Surf Coat Technol 204:2073

    Article  Google Scholar 

  85. Zaccarelli E (2007) Colloidal gels: equilibrium and non-equilibrium routes. J Phys Cond Matt 19:323101

    Google Scholar 

  86. Dawson KA (2002) The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr Opin Colloid Interface Sci 7:218

    Article  Google Scholar 

  87. Sciortino F, Zaccarelli E (2011) Reversible gels of patchy particles. Curr Opin Solid State Mat Sci 15:246

    Article  Google Scholar 

  88. Smith PA, Petekidis G, Egelhaaf SU, Poon WCK (2007) Yielding and crystallization of colloidal gels under oscillatory shear. Phys Rev E 76(4):041402

    Article  Google Scholar 

  89. Lindström SB, Kodger TE, Sprakel J, Weitz DA (2012) Structures, stresses, and fluctuations in the delayed failure of colloidal gels. Soft Matter 8:3657

    Article  Google Scholar 

  90. Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31(8):683

    Article  Google Scholar 

  91. Matricardi P, Dentini M, Crescenzi V, Ross-Murphy SB (1995) Gelation of chemically cross-linked polygalacturonic acid derivatives. Carbohydr Polym 27(3):215

    Article  Google Scholar 

  92. Hodgson DF, Amis EJ, Non-Cryst J (1991) Dynamic viscoelasticity during sol-gel reactions. Dynamic viscoelasticity during sol-gel reactions. J Non-Cryst Solids 131–133:913

    Google Scholar 

  93. te Nijenhuis K, Winter HH (1989) Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules 22:411

    Google Scholar 

  94. Tanaka H, Jabbari-Farouji S, Meunier J, Bonn D (2005) Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: aging and gelation. Phys Rev E 71(2):021402

    Google Scholar 

  95. Parker A, Normand V (2010) Glassy dynamics of gelatin gels. Soft Matter 6(19):4916

    Google Scholar 

  96. Ronsin O, Caroli C, Baumberger T (2009) Interplay between shear loading and structural aging in a physical gelatin gel. Phys Rev Lett 103(13):138302

    Google Scholar 

  97. Winter HH (2013) Glass transition as the rheological inverse of gelation. Macromolecules 46(6):2425

    Google Scholar 

  98. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  99. Quarch K, Kind M (2010) Inorganic precipitated silica gel. Part 1: Gelation kinetics and gel properties. Chem Eng Technol 33:1034

    Google Scholar 

  100. Quarch K, Durand E, Kind M (2010) Inorganic precipitated silica gel. Part 2: Fragmentation by mechanical energy. Chem Eng Technol 33

    Google Scholar 

  101. Schlomach J, Kind M (2004) Investigations on the semi-batch precipitation of silica. J Colloid Interface Sci 277(2):316

    Google Scholar 

  102. Sahabi H, Kind M (2011) Experimentally justified model-like description of consolidation of precipitated silica Polymers 3(4):2156

    Google Scholar 

  103. Sahabi H, Kind M (2011) Consolidation of inorganic precipitated silica gel. Polymers 3(3):1423

    Google Scholar 

  104. Wang M, Winter HH, Auernhammer GK (2013) Time and frequency dependent rheology of reactive silica gels. J Coll Int Sci 413:159

    Google Scholar 

  105. Manley S, Davidovitch B, Davies NR, Cipelletti L, Bailey AE, Christianson RJ, Gasser U, Prasad V, Segre PN, Doherty MP, Sankaran S, Jankovsky AL, Shiley B, Bowen J, Eggers J, Kurta C, Lorik T, Weitz DA (2005) Time-dependent strength of colloidal gels. Phys Rev Lett 95(4):048302

    Google Scholar 

  106. Friedrich C, Braun H (1992) Generaized cole-cole behavior and its rheological relevance. Rheol Acta 31:309

    Google Scholar 

  107. Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400

    Google Scholar 

  108. Prasad M, Mehta SM, Desai JB (1931) Viscosity of the silicic acid gel-forming mixtures. J Phys Chem 36(5):1384

    Google Scholar 

  109. Laurati M, Petekidis G, Koumakis N, Cardinaux F, Schofield AB, Brader JM, Fuchs M, Egelhaaf SU (2009) Structure, dynamics, and rheology of colloid-polymer mixtures: from liquids to gels. J Chem Phys 130(13):134907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Günter K. Auernhammer or Doris Vollmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Auernhammer, G.K., Vollmer, D., Wang, M., Roth, M., D’Acunzi, M. (2015). Aggregation and Deformation Induced Reorganisation of Colloidal Suspension. In: Kind, M., Peukert, W., Rehage, H., Schuchmann, H. (eds) Colloid Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-15129-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15129-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15128-1

  • Online ISBN: 978-3-319-15129-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics