Skip to main content
Log in

Electronic Tongues

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The use of multivariate data analysis combined with sensors with partially overlapping selectivities has become a very powerful tool in measurement technology. These systems are often referred to as artificial senses, because they function in a way similar to the human senses. One such system is the electronic nose. This article focuses on similar concepts as the electronic nose, but for use in aqueous solutions. Because these systems are related to the human sense of taste in the same way the electronic nose is related to olfaction, they have been termed taste sensors, or “electronic tongues.” Various measurement principles that can be used in electronic tongues are described and discussed in this article. These include electrochemical techniques such as potentiometry, voltammetry, and conductometry. Also, optical techniques based on light absorption at specific wavelengths or the use of surface plasmon resonance are described. Mass-sensitive devices based on piezoelectric crystals have also been used and are described here. A special emphasis is given to the voltammetric electronic tongue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Winquist, C. Krantz-Rülcker, and I. Lundström, in Sensors Update, Chapter 2.2, edited by H. Baltes, G.K. Fedder, and J.G. Korvink (Wiley-VHC, Weinheim, Germany, 2003).

  2. J.W. Gardner and P.N. Bartlett, Sens. Actuators, B 18-19 (1994) p. 211.

    Google Scholar 

  3. F. Winquist, H. Sundgren, and I. Lundström, in Biosensors for Food Analysis, edited by A.O. Scott (Royal Society of Chemistry, Athenaeum Press, Gateshead, UK, 1998).

  4. K. Toko, Mater. Sci. Eng., C 4 (1996) p. 69.

    Article  CAS  Google Scholar 

  5. A. Legin, A. Rudnitskaya, Y. Vlasov, C. Di Natale, F. Davide, and A. D’Amico, in Tech. Dig. Eurosensors X (Leuven, Belgium, 1996) p. 427.

    Google Scholar 

  6. F. Winquist, P. Wide, and I. Lundström, Anal. Chim. Acta 357 (1997) p. 21.

    Article  CAS  Google Scholar 

  7. K. Toko, Sens. Actuators, B 64 (2000) p. 205.

    Article  Google Scholar 

  8. K. Toko, Meas. Sci. Technol. 9 (1998) p. 1919.

    Article  CAS  Google Scholar 

  9. Taste Sensing System SA401, Anritsu Corp., Japan.

  10. Astree Liquid & Taste Analyzer, Alpha M.O.S., Toulouse, France.

  11. SensET AB, Skärblacka, Sweden.

  12. A.J. Bard and L.R. Faulkner, in Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, New York, 1980).

    Google Scholar 

  13. J. Wang, in Analytical Electrochemistry (Wiley-VCH, Weinheim, Germany, 1994).

    Google Scholar 

  14. P.T. Kissinger and W.R. Heineman, in Laboratory Techniques in Electroanalytical Chemistry, 2nd ed. (Marcel Dekker, New York, 1996).

    Google Scholar 

  15. A. Riul, R.R. Malmegrim, F.J. Fonseca, and L.H.C. Mattoso, Biosens. Bioelectron. 18 (11) (2003) p. 1365.

    Article  CAS  Google Scholar 

  16. H. Nanto, Y. Hamaguchi, M. Komura, Y. Takayama, and T. Kobayashi, Sens. Mater. 14 (2002) p. 1.

    CAS  Google Scholar 

  17. R. Lucklum and P. Hauptmann, Sens. Actuators, B 70 (2000) p. 30.

    Article  Google Scholar 

  18. K. Toko, K. Hayashi, M. Yamanaka, and K. Yamafuji, in Tech. Dig. 9th Sens. Symp. (1990) p. 193.

    Google Scholar 

  19. K. Hayashi, M. Yamanaka, K. Toko, and K. Yamafuji, Sens. Actuators, B 2 (1990) p. 205.

    Article  Google Scholar 

  20. K. Toko, Biomimetic Sensor Technology (Cambridge University Press, Cambridge, UK, 2000).

    Book  Google Scholar 

  21. K. Toko, Bios. Bioelectron. 13 (1998) p. 701.

    Article  CAS  Google Scholar 

  22. T. Imamura, K. Toko, S. Yanagisawa, and T. Kume, Sens. Actuators, B 37 (1996) p. 179.

    Article  Google Scholar 

  23. H. Yamada, Y. Mizota, K. Toko, and T. Doi, Mater. Sci. Eng. C 5 (1997) p. 41.

    Article  CAS  Google Scholar 

  24. T. Fukunaga, K. Toko, S. Mori, Y. Nakabayashi, and M. Kanda, Sens. Mater. 8 (1) (1996) p. 47.

    CAS  Google Scholar 

  25. A. Taniguchi, Y. Naito, N. Maeda, Y. Sato, and H. Ikezaki, Sens. Mater. 11 (7) (1999) p. 437.

    CAS  Google Scholar 

  26. C. Di Natale, F. Davide, A. D’Amico, A. Legin, A. Rudnitskaya, B.L. Selezenev, and Y. Vlasov, in Tech. Dig. Eurosensors X (Leuven, Belgium, 1996) p. 1345.

    Google Scholar 

  27. C. Di Natale, A. Macagnano, F. Davide, A. D’Amico, A. Legin, Y. Vlasov, A. Rudnitskaya, and B.L. Selezenev, Sens. Actuators, B 44 (1997) p. 423.

    Article  Google Scholar 

  28. A. Legin, A. Rudnitskaya, L. Lvova, Y. Vlasov, C. Di Natale, and A. D’Amico, Anal. Chim. Acta 484 (2003) p. 33.

    Article  CAS  Google Scholar 

  29. A. Legin, A. Rudinitskaya, Y. Vlasov, C. Di Natale, E. Mazzone, and A. D’Amico, Electroanalysis 11 (10-11) (1999) p. 814.

    Article  CAS  Google Scholar 

  30. A. Legin, A. Smirnova, A. Rudinitskaya, L. Lvova, E. Suglobova, and Y. Vlasov, Anal. Chim. Acta 385 (1999) p. 131.

    Article  CAS  Google Scholar 

  31. J. Mortensen, A. Legin, A. Ipatov, A. Rudinitskaya, Y. Vlasov, and K. Hjuler, in Anal. Chim. Acta 403 (2000) p. 273.

    Article  CAS  Google Scholar 

  32. P. Bergveld, IEEE Trans. Biomed. Eng. BME-19 (1970).

  33. Y. Kanai, M. Shimizu, H. Uchida, H. Nakahara, C.G. Zhou, H. Maekawa, and T. Katsube, Sens. Actuators, B 20 (1994) p. 175.

    Article  Google Scholar 

  34. Y. Sasaki, Y. Kanai, H. Uchida, and T. Katsube, Sens. Actuators, B 24-25 (1995) p. 819.

    Article  Google Scholar 

  35. M. George, W. Parak, and H. Gaub, Sens. Actuators, B 69 (2000) p. 266.

    Article  Google Scholar 

  36. Y. Murakami, T. Kikuchi, A. Yamamura, T. Sakaguchi, K. Yokoyama, Y. Ito, M. Takiue, H. Uchida, T. Katsube, and E. Tamiya, Sens. Actuators, B 53 (1998) p. 163.

    Article  Google Scholar 

  37. F. Winquist, C. Krantz-Rülcker, P. Wide, and I. Lundström, Meas. Sci. Technol. 9 (1998) p. 1937.

    Article  CAS  Google Scholar 

  38. U. Koller, M. Hemmingsson, K. &stergren, F. Winquist, and C. Krantz-Rülcker, “The Electronic Tongue as an On-Line Sensor in the Dairy Industry” (2004) unpublished.

    Google Scholar 

  39. P. Ivarsson, S. Holmin, N.-E. Höjer, C. Krantz-Rülcker, and F. Winquist, Sens. Actuators, B 76 (2001) p. 449.

    Article  Google Scholar 

  40. C. Krantz-Rülcker, M. Stenberg, F. Winquist, and I. Lundström, Anal. Chim. Acta 426 (2001) p. 217.

    Article  Google Scholar 

  41. P. Ivarsson, Y. Kikkawa, F. Winquist, C. Krantz-Rülcker, N.E. Höjer, K. Hayashi, K. Toko, and I. Lundström, Anal. Chim. Acta 49 (2001) p. 59.

    Article  Google Scholar 

  42. E. Rydberg, F. Winquist, C. Krantz-Rülcker, and I. Lundström, “Determination of Heavy Metals in Soil by Use of a Voltammetric Electronic Tongue” (2004) unpublished.

    Google Scholar 

  43. C. Soderstrom, A. Rudnitskaya, A. Legin, and C. Krantz-Rulcker, “Differentiation of Four Aspergillus Species and One Zygosaccharomyces with Two Electronic Tongues Based on Different Techniques” (2004) unpublished.

    Google Scholar 

  44. F. Winquist, S. Holmin, C. Krantz-Rulcker, P. Wide, and I. Lundstrom, Anal. Chim. Acta 406 (2000) p. 147.

    Article  CAS  Google Scholar 

  45. F. Winquist, E. Rydberg, S. Holmin, C. Krantz-Rulcker, and I. Lundstrom, Anal. Chim. Acta 471 (2000) p. 159.

    Article  Google Scholar 

  46. A. Carlsson, C. Krantz-Rulcker, and F. Winquist, “An Electronic Tongue as a Tool for Wet-End Control,” submitted to Nordic Pulp and Paper Research Journal (2004).

    Google Scholar 

  47. C. Soderstrom, H. Boren, F. Winquist, and C. Krantz-Rulcker, “Analysis of Mold Growth in Liquid Media with an Electronic Tongue,” unpublished.

  48. F. Winquist, R. Bjorkland, C. Krantz-Rulcker, I. Lundstrom, K. Ostergren, and T. Skoglund, Sens. Actuators, B (2004) submitted.

    Google Scholar 

  49. M. Ferreira, A. Riul, K. Wohnrath, F.J. Fonesca, O.N. Oliveira, and L.H.C. Mattoso, Anal. Chem. 75 (2003) p. 953.

    Article  CAS  Google Scholar 

  50. A. Riul, A.M. G. Soto, S.V. Mello, S. Bone, D.M. Taylor, and L.H.C. Mattoso, Synth. Met. 132 (2003) p. 109.

    Article  CAS  Google Scholar 

  51. R. Borngraber, J. Hartmann, R. Lucklum, S. Rosler, and P. Hauptmann, Sens. Actuators, B 65 (2000) p. 273.

    Article  Google Scholar 

  52. S. Ezaki and S. Iiyama, Sens. Mater. 13 (2) (2001) p. 119.

    CAS  Google Scholar 

  53. T. Yamazaki, J. Kondoh, Y. Matsui, and S. Shiokawa, Sens. Actuators 83 (2000) p. 34.

    Article  CAS  Google Scholar 

  54. J. Kondoh and S. Shiokawa, Jpn. J. Appl. Phys. 33 (1994) p. 3095.

    Article  Google Scholar 

  55. J. Kondoh and S. Shiokawa, in Tech. Dig. Transducers ’95-Eurosensors IX (Stockholm, 1995) p. 716.

    Google Scholar 

  56. A. Campitelli, W. Wlodarski, and M. Hoummady, Sens. Actuators, B 49 (1998) p. 195.

    Article  Google Scholar 

  57. S.M. Lee, S.W. Jang, S.H. Lee, J.H. Kim, S.H. Kim, and S.W. Kang, Sens. Mater. 13 (2002) p. 11.

    CAS  Google Scholar 

  58. F. Winquist, P. Wide, T. Eklov, C. Hjort, and I. Lundstrom, J. Food Proc. Eng. 22 (1999) p. 37.

    Article  Google Scholar 

  59. P. Wide, F. Winquist, and I. Kalaykov, in Proc. Second Int. Conf. Information Fusion, FUSION ’99 (1999) p. 1444.

    Google Scholar 

  60. C. Di Natale, R. Paolesse, A. Macagnano, A. Mantini, A. D’Amico, M. Ubigli, A. Legin, L. Lvova, A. Rudinitskaya, and Y. Vlasov, Sens. Actuators, B 69 (2000) p. 243.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winquist, F., Krantz-Rülcker, C. & Lundström, I. Electronic Tongues. MRS Bulletin 29, 726–731 (2004). https://doi.org/10.1557/mrs2004.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.210

Keywords

Navigation