Skip to main content
Log in

MOCVD-Based YBCO-Coated Conductors

  • Material Matter
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metalorganic chemical vapor deposition (MOCVD) is a well-developed deposition process that shows great promise for scaling up the production of high-temperature superconductors (HTSs) to quickly fabricate useful lengths of superconducting tapes and wires.The primary advantage of MOCVD is its potential for high tape throughput, a key factor in determining the cost of second-generation HTS tapes.This article details progress in long-length HTS tape fabrication, high-throughput processing, and techniques to improve critical current levels in high magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chou Q. Zhong Q.L. Li K. Abazajian A. Ignatiev C.Y. Wang E.E. Deal and J.G. Chen Physica C 254 (1995) p.93.

    Article  CAS  Google Scholar 

  2. H. Yamane H. Masumoto T. Hirai H. Iwasaki K. Watanabe N. Kobayashi Y. Muto and H. Kurosawa Appl. Phys. Lett. 53 (1988) p.1548.

    Article  CAS  Google Scholar 

  3. M. Becht Appl. Supercond. 4 (1996) p.465.

    Article  CAS  Google Scholar 

  4. B.C. Richards S.L. Cook D.L. Pinch G.W. Andrews G. Lengeling B. Schulte, H. Jürgensen, Y.Q. Shen P. Vase T. Freltoft A. Spee J.L. Linden M.L. Hitchman S.H. Shamlian and A. Brown Physica C 252 (1995) p.229.

    Article  CAS  Google Scholar 

  5. H. Nagai Y. Yoshida Y. Ito S. Taniguchi I. Hirabayashi N. Matsunami and Y. Takai Supercond. Sci. Technol. 10 (1997) p.213.

    Article  CAS  Google Scholar 

  6. V. Burtman M. Schieber I. Brodsky H. Hermon and Y. Yaroslavsky J. Cryst. Growth 166 (1996) p.832.

    Article  CAS  Google Scholar 

  7. H. Busch A. Fink A. Müller, and K. Samwer Supercond. Sci. Technol. 6 (1993) p.42.

    Article  CAS  Google Scholar 

  8. Y. Yoshida Y. Ito I. Hirabayashi H. Nagai and Y. Takai Appl. Phys. Lett. 69 (1996) p.845.

    Article  CAS  Google Scholar 

  9. V. Selvamanickam G. Carota M. Funk N. Vo P. Haldar U. Balachandran M. Chudzik P. Arendt J.R. Groves R. DePaula and B. Newnam IEEE Trans. Appl. Supercond. 11 (2001) p.3379.

    Article  Google Scholar 

  10. K. Onabe H. Akata K. Higashiyama S. Nagaya and T. Saitoh IEEE Trans. Appl. Supercond. 11 (2001) p.3150.

    Article  Google Scholar 

  11. O. Stadel J. Schmidt, G. Wahl C. Jimenez F. Weiss M. Krellmann D. Selbmann N.V. Markov S.V. Samoylenkov O.Y. Gorbenko. and A.R. Kaul Physica C 341–348 (2000) p.2477.

    Article  Google Scholar 

  12. J. Zhang R.A. Gardiner P.S. Kirlin R.W. Boerstler and J. Steinbeck Appl. Phys. Lett. 61 (1992) p.2884.

    Article  CAS  Google Scholar 

  13. O. Stadel J.Schmidt, M. Liekefett G. Wahl O. Gorbenko and A.R. Kaul IEEE Trans. Appl. Supercond. 13 (2003) p.2528.

    Article  CAS  Google Scholar 

  14. V. Selvamanickam H.G. Lee Y. Li X. Xiong Y. Qiao J.Reeves, Y. Xie A. Knoll and K. Lenseth Physica C 392–396 (2003) p.859.

    Article  Google Scholar 

  15. V. Selvamanickam G.B. Galinski G. Carota J. DeFrank C. Trautwein P. Haldar U. Balachandran M. Chudzik J.Y. Coulter and P.N. Arendt Physica C 333 (2000) p.155.

    Article  CAS  Google Scholar 

  16. V. Selvamanickam H.G. Lee X. Xiong Y. Qiao Y. Xie J. Reeves Y. Li A. Knoll and K. Lenseth ( Mat. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.29.

    Google Scholar 

  17. V. Selvamanickam H.G. Lee X. Xiong Y. Qiao Y. Xie J. Reeves A. Knoll Y. Li K. Lenseth and R. Schmidt Proc. Electrochem. Soc. Ann. Mtg. (Electrochemical Society Inc., Pennington, NJ, 2004) in press.

    Google Scholar 

  18. Y. Ito Y. Yoshida Y. Mizushima I. Hirabayashi H. Nagai and Y. Takai Jpn. J.Appl. Phys., Part 2 35 (1996) p.L825.

    Article  CAS  Google Scholar 

  19. V. Selvamanickam H.G. Lee Y. Xie X. Xiong Y. Qiao Y. Li J. Reeves and A. Knoll Proc. Int. Workshop on Coated Conductors for Applications (2004)in press.

    Google Scholar 

  20. Y. Xie in Proc. Air Force Office of Sci. Res. MURI Coated Cond. Rev. [CD-ROM] (University of Wisconsin-Madison, 2004).

    Google Scholar 

  21. L. Civale B. Maiorov A. Serquis J.O. Willis J.Y. Coulter H. Wang Q.X. Jia P.N. Arendt J.L. MacManus-Driscoll, M.P. Maley and S.R. Foltyn Appl. Phys. Lett. 84 (2004) p.2121.

    Article  CAS  Google Scholar 

  22. B. Dam J.M. Huijibregtse F.C. Klaassen R.C.F. Geest van der, G. Doornbos J.H. Rector A.M. Testa S. Freisem J.C. Martinez Stäuble-PüB. mpin, and R. Griessen Nature 399 (1999) p.439.

    Article  CAS  Google Scholar 

  23. H. Yamada H. Yamasaki Develos-K. Bagarinao, Y. Nakagawa Y. Mawatari J.C. Nie H. Obara and S. Kosaka Supercond. Sci. Technol. 17 (2004) p.58.

    Article  CAS  Google Scholar 

  24. K. Onabe S. Nagaya T. Shimonosono Y. Iijima N. Sadakata T. Saito and O. Kohno Adv. Cryog. Eng. 44B (1998) p.827.

    Google Scholar 

  25. K. Onabe T. Doi N. Kashima S. Nagaya and T. Saitoh Physica C 392–396 (2003) p. 863.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvamanickam, V., Xie, Y., Reeves, J. et al. MOCVD-Based YBCO-Coated Conductors. MRS Bulletin 29, 579–582 (2004). https://doi.org/10.1557/mrs2004.164

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.164

Keywords

Navigation