Skip to main content
Log in

Measurements of In-Plane Material Properties with Scanning Probe Microscopy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Scanning probe microscopy (SPM) was originally conceived as a method for measuring atomic-scale surface topography. Over the last two decades, it has blossomed into an array of techniques that can be used to obtain a rich variety of information about nanoscale material properties. With the exception of friction measurements, these techniques have traditionally depended on tip–sample interactions directed normal to the sample’s surface. Recently, researchers have explored several effects arising from interactions parallel to surfaces, usually by deliberately applying a modulated lateral displacement. In fact, some parallel motion is ubiquitous to cantilever-based SPM, due to the tilt of the cantilever. Recent studies, performed in contact, noncontact, and intermittent-contact modes, provide new insights into properties such as structural anisotropy, lateral interactions with surface features, nanoscale shear stress and contact mechanics, and in-plane energy dissipation. The understanding gained from interpreting this behavior has consequences for all cantilever-based scanning probe microscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Meyer and N. Amer, Appl. Phys. Lett. 57 (1990) p. 2089.

    Article  CAS  Google Scholar 

  2. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, and J. Gurley, J. Appl. Phys. 65 (1989) p. 164.

    Article  CAS  Google Scholar 

  3. R.W. Carpick and M. Salmeron, Chem. Rev. 97 (1997) p. 1163.

    Article  CAS  Google Scholar 

  4. D.F. Ogletree, R.W. Carpick, and M. Salmeron, Rev. Sci. Instrum. 67 (1996) p. 3298.

    Article  CAS  Google Scholar 

  5. J.E. Sader, J.W.M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70 (1999) p. 3967.

    Article  CAS  Google Scholar 

  6. J.S. Villarrubia, J. Res. Natl. Inst. Stand. Technol. (USA) 102 (1997) p. 425.

    Article  CAS  Google Scholar 

  7. H. Hertz, J. Reine Angew. Math. 92 (1881) p. 156.

    Google Scholar 

  8. K.L. Johnson, K. Kendall, and A.D. Roberts, Proc. R. Soc. London, Series A 324 (1971) p. 301.

    Article  CAS  Google Scholar 

  9. B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, J. Colloid Interface Sci. 53 (1975) p. 314.

    Article  CAS  Google Scholar 

  10. D. Maugis, J. Colloid Interface Sci. 150 (1992) p. 243.

    Article  CAS  Google Scholar 

  11. R.W. Carpick, D.F. Ogletree, and M. Salmeron, J. Colloid Interface Sci. 211 (1999) p. 395.

    Article  CAS  Google Scholar 

  12. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, UK, 1987).

    Google Scholar 

  13. M.A. Lantz, S.J. O’Shea, A.C.F. Hoole, and M.E. Welland, Appl. Phys. Lett. 70 (1997) p. 970.

    Article  CAS  Google Scholar 

  14. O. Piétrement, J.L. Beaudoin, and M. Troyon, Trib. Lett. 7 (2000) p. 213.

    Article  Google Scholar 

  15. K. Yamanaka and E. Tomita, Jpn. J. Appl. Phys., Part 1 34 (1995) p. 2879.

    Article  CAS  Google Scholar 

  16. R.W. Carpick, D.F. Ogletree, and M. Salmeron, Appl. Phys. Lett. 70 (1997) p. 1548.

    Article  CAS  Google Scholar 

  17. M.A. Lantz, S.J. O’Shea, M.E. Welland, and K.L. Johnson, Phys. Rev. B 55 (1997) p. 10776.

    Article  CAS  Google Scholar 

  18. R.W. Carpick, M. Enachescu, D.F. Ogletree, and M. Salmeron, in Fracture and Ductile vs. Brittle Behavior—Theory, Modelling and Experiment, edited by G.E. Beltz, R.L. Blumberg Selinger, K.-S. Kim, and M.P. Marder (Mater. Res. Soc. Symp. Proc. 539, Warrendale, PA, 1999) p. 93.

  19. O. Pietrement and M. Troyon, Langmuir 17 (2001) p. 6540.

    Article  CAS  Google Scholar 

  20. K.J. Wahl, S.V. Stepnowski, and W.N. Unertl, Trib. Lett. 5 (1998) p. 103.

    Article  Google Scholar 

  21. Y. Pu, M. Rafailovich, K. Sokolov, Y. Duan, E. Pearce, V. Zaitsev, S. Schwarz, and S. Ge, Langmuir 17 (2001) p. 5865.

    Article  CAS  Google Scholar 

  22. S. Sills and R.M. Overney, Phys. Rev. Lett. 91 095501 (2003).

  23. M. He, A.S. Blum, G. Overney, and R.M. Overney, Phys. Rev. Lett. 88 154302 (2002).

  24. T. Gray, C. Buenviaje, R.M. Overney, S.A. Jenekhe, L. Zheng, and A.K.Y. Jen, Appl. Phys. Lett. 83 (2003) p. 2563.

    Article  CAS  Google Scholar 

  25. H.-U. Krotil, T. Stifter, and O. Marti, Appl. Phys. Lett. 77 (2000) p. 3857.

    Article  CAS  Google Scholar 

  26. T. Drobek, R.W. Stark, and W.M. Heckl, Phys. Rev. B 64 045401 (2001).

  27. K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike, and T. Goto, Surf. Interface. Anal. 27 (1999) p. 600.

    Article  CAS  Google Scholar 

  28. R.W. Carpick, D.Y. Sasaki, and A.R. Burns, Trib. Lett. 7 (1999) p. 79.

    Article  CAS  Google Scholar 

  29. R.M. Overney, H. Takano, M. Fujihira, W. Paulus, and H. Ringsdorf, Phys. Rev. Lett. 72 (1994) p. 3546.

    Article  CAS  Google Scholar 

  30. M. Liley, D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham, and C. Duschl, Science 280 (1998) p. 273.

    Article  CAS  Google Scholar 

  31. U. Gehlert, J.Y. Fang, and C.M. Knobler, J. Phys. Chem. B 102 (1998) p. 2614.

    Article  CAS  Google Scholar 

  32. K. Hisada and C.M. Knobler, Colloids Surf., A 198-200 (2002) p. 21.

    Article  CAS  Google Scholar 

  33. H. Bluhm, U.D. Schwarz, K.P. Meyer, and R. Wiesendanger, Appl. Phys. A 61 (1995) p. 525.

    Article  Google Scholar 

  34. D.Y. Sasaki, R.W. Carpick, and A.R. Burns, J. Colloid Interface Sci. 229 (2000) p. 490.

    Article  CAS  Google Scholar 

  35. M.D. Mowery and C.E. Evans, Tetrahedron Lett. 38 (1997) p. 11.

    Article  CAS  Google Scholar 

  36. A.R. Burns and R.W. Carpick, Appl. Phys. Lett. 78 (2001) p. 317.

    Article  CAS  Google Scholar 

  37. M.S. Marcus, R.W. Carpick, D.Y. Sasaki, and M.A. Eriksson, Phys. Rev. Lett. 88 226103 (2002).

  38. M.S. Marcus, M.A. Eriksson, D.Y. Sasaki, and R.W. Carpick, Ultramicroscopy 97 (2003) p. 145.

    Article  CAS  Google Scholar 

  39. J.P. Cleveland, B. Anczykowski, A.E. Schmid, and V.B. Elings, Appl. Phys. Lett. 72 (1998) p. 2613.

    Article  CAS  Google Scholar 

  40. J. Tamayo and R. Garcia, Appl. Phys. Lett. 71 (1997) p. 2394.

    Article  CAS  Google Scholar 

  41. M.J. D’Amato, M.S. Marcus, D.Y. Sasaki, M.A. Eriksson, and R.W. Carpick, Appl. Phys. Lett. (2004) in press.

  42. R. Garcia and A. San Paulo, Phys. Rev. B 60 (1999) p. 4961.

    Article  CAS  Google Scholar 

  43. O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer, and P. Grütter, Phys. Rev. B 65 161403 (2002).

  44. M.F. Crommie, C.P. Lutz, and D.M. Eigler, Science 262 (1993) p. 218

    Article  CAS  Google Scholar 

  45. S.P. Jarvis, H. Yamada, K. Kobayashi, A. Toda, and H. Tokumoto, Appl. Surf. Sci. 157 (2000) p. 314.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpick, R.W., Eriksson, M.A. Measurements of In-Plane Material Properties with Scanning Probe Microscopy. MRS Bulletin 29, 472–477 (2004). https://doi.org/10.1557/mrs2004.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.141

Keywords

Navigation