Skip to main content
Log in

Impact of Single-Event Upsets in Deep-Submicron Silicon Technology

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The once-ephemeral soft error phenomenon has recently caused considerable concern for manufacturers of advanced silicon technology. Soft errors, if unchecked, now have the potential for inducing a higher failure rate than all of the other reliability- failure mechanisms combined. This article briefly reviews the three dominant radiation mechanisms responsible for soft errors in terrestrial applications and how soft errors are generated by the collection of radiation-induced charge. Scaling trends in the soft error sensitivity of various memory and logic components are presented, along with a consideration of which applications are most likely to require intervention. Some of the mitigation strategies that can be employed to reduce the soft error rate in these devices are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.C. May and M.H. Woods, IEEE Trans. Electron Devices 26 (1) (1979) p. 8.

    Google Scholar 

  2. J.F. Ziegler and W.A. Lanford, J. Appl. Phys. 52 (1981) p. 4318.

    Google Scholar 

  3. C.A. Gossett, B.W. Hughlock, M. Katoozi, G.S. LaRue, and S.A. Wender, IEEE Trans. Nucl. Sci. 40 (6) (1993) p. 1856.

    Google Scholar 

  4. W.R. McKee, H.P. McAdams, E.B. Smith, J.W. McPherson, J.W. Janzen, J.C. Ondrusek, A.E. Hyslop, D.E. Russell, R.A. Coy, D.W. Bergman, N.Q. Nguyen, T.J. Aton, L.W. Block, and V.C. Huynh, in Proc. 34th IEEE Int. Reliability Physics Symp. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1996) p. 1.

    Google Scholar 

  5. E. Normand, IEEE Trans. Nucl. Sci. 43 (6) (1996) p. 2750.

    Google Scholar 

  6. R.C. Baumann, T.Z. Hossain, S. Murata, and H. Kitagawa, in Proc. 33rd IEEE Int. Reliability Physics Symp. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995) p. 302.

    Google Scholar 

  7. R.C. Baumann and E.B. Smith, in Proc. 38th IEEE Int. Reliability Physics Symp. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2000) p. 157.

    Google Scholar 

  8. R.C. Baumann and E.B. Smith, Microelectron. Relia. 41 (2) (2001) p. 218.

    Google Scholar 

  9. C.M. Hsieh, P.C. Murley and R.R. O’Brien, in Proc. 19th IEEE Int. Reliability Physics Symp. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1981) p. 42.

    Google Scholar 

  10. L. Massengill, IEEE Trans. Nucl. Sci. 43 (2) (1996) p. 576.

    Google Scholar 

  11. J.M. Palau, G. Hubert, K. Coulie, B. Sagnes, M.C. Calvet, and S. Fourtine, IEEE Trans. Nucl. Sci. 48 (2) (2001) p. 225.

    Google Scholar 

  12. P. Roche, J.M. Palau, G. Bruguier, C. Tavernier, R. Ecoffet, and J. Gasiot, IEEE Trans. Nucl. Sci. 46 (6) (1999) p. 1354.

    Google Scholar 

  13. P.E. Dodd, IEEE Trans. Nucl. Sci. 43 (2) (1996) p. 561.

    Google Scholar 

  14. L.W. Massengill, A.E. Baranski, D.O. Van Nort, J. Meng, and B.L. Bhuva, IEEE Trans. Nucl. Sci. 47 (6) (2000) p. 2607.

    Google Scholar 

  15. “Getting the Lead Out,” Dr. Dobb’s Journal (April 2000) Web article, http://www.ddj.com/documents/s=886/ddj0004t/0004t.htm (accessed November 2002).

  16. O. Musseau, IEEE Trans. Nucl. Sci. 43 (2) (1996) p. 604.

    Google Scholar 

  17. M.P. Baze, S.P. Buchner, and D. McMorrow, IEEE Trans. Nucl. Sci. 47 (6) (2000) p. 2603.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, R. Impact of Single-Event Upsets in Deep-Submicron Silicon Technology. MRS Bulletin 28, 117–120 (2003). https://doi.org/10.1557/mrs2003.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.38

Keyword

Navigation