Skip to main content

Advertisement

Log in

Reverse Engineering: Learning from Proteins How to Enhance the Performance of Synthetic Nanosystems

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Proteins are nature’s workhorses. They enable living systems to use available energy sources and convert energy from one form into another. Understanding the underlying design principles of how proteins have evolved to fulfill the necessary functions of life can provide researchers with new insights into how to enhance the performance of synthetic nanosystems with far greater sophistication. This review summarizes the relationship between various protein functions and the underlying engineering principles of their overall structures. For example, proteins can specifically recognize other biomolecules with a selectivity and affinity several orders of magnitude superior to their synthetic counterparts. Mimicking a protein binding site with a structurally fixed synthetic analogue is insufficient, since structural changes in the active sites enhance molecular recognition and the catalytic activity of proteins. Recent data also show that protein function can be switched by stretching proteins into nonequilibrium states under physiological conditions. Schemes by which the exposure and structure of recognition sites are switched can be implemented in the design of mechanically responsive synthetic and hybrid systems. Motor proteins, finally, are the jewel in nature’s crown, as they can convert one free-energy form into another to generate mechanical force. It is thus of considerable interest to integrate the chemically powered engines into synthetic materials and devices. Finally, we have to advance our ability to assemble nanocomponents into functional systems. Again, lessons can be learned from how biology solves the challenge of systems integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Arnold, Nature 409 (2001) p. 253.

    Article  CAS  Google Scholar 

  2. H. Pedersen, S. Holder, D.P. Sutherlin, U. Schwitter, D.S. King, and P.G. Schultz, Proc. Natl. Acad. Sci. U.S.A. 95 (1998) p. 10523.

    Article  CAS  Google Scholar 

  3. P.G. Schultz and R.A. Lerner, Nature 418 (2002) p. 485.

    Article  CAS  Google Scholar 

  4. J.M. Frechet, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) p. 4782.

    Article  CAS  Google Scholar 

  5. A.D. Schluter and J.P. Rabe, Angew. Chem., Int. Ed. Engl. 39 (2000) p. 864.

    Article  CAS  Google Scholar 

  6. O.L. Padilla De Jesus, H.R. Ihre, L. Gagne, J.M. Frechet, and F.C. Szoka Jr., Bioconjugate Chem. 13 (2002) p. 453.

    Article  CAS  Google Scholar 

  7. G. Vlatakis, L.I. Andersson, R. Muller, and K. Mosbach, Nature 361 (1993) p. 645.

    Article  CAS  Google Scholar 

  8. L.I. Andersson, R. Muller, G. Vlatakis, and K. Mosbach, Proc. Natl. Acad. Sci. U.S.A. 92 (1995) p. 4788.

    Article  CAS  Google Scholar 

  9. H. Shi, W.B. Tsai, M.D. Garrison, S. Ferrari, and B.D. Ratner, Nature 398 (1999) p. 593.

    Article  CAS  Google Scholar 

  10. A.K. Boal, F. Ilhan, J.E. DeRouchey, T. Thurn-Albrecht, T.P. Russell, and V.M. Rotello, Nature 404 (2000) p. 746.

    Article  CAS  Google Scholar 

  11. A.K. Boal and V.M. Rotello, J. Am. Chem. Soc. 124 (2002) p. 5019.

    Article  CAS  Google Scholar 

  12. G.M. Credo, A.K. Boal, K. Das, T.H. Galow, V.M. Rotello, D.L. Feldheim, and C.B. Gorman, J. Am. Chem. Soc. 124 (2002) p. 9036.

    Article  CAS  Google Scholar 

  13. D.E. Koshland, Annu. Rev. Biochem. 37 (1967) p. 359.

    Article  Google Scholar 

  14. R. Huber, Nature 280 (1979) p. 538.

    Article  CAS  Google Scholar 

  15. M. Gerstein, A.M. Lesk, and C. Chothia, Biochemistry 33 (1994) p. 6739.

    Article  CAS  Google Scholar 

  16. P.A. Carr, H.P. Erickson, and A.G. Palmer III, Structure 5 (1997) p. 949.

    Article  CAS  Google Scholar 

  17. J.M. Yon, D. Perahia, and C. Ghelis, Biochimie 80 (1998) p. 33.

    Article  CAS  Google Scholar 

  18. B. Testa and A.J. Bojarski, Eur. J. Pharm. Sci. 11 (Suppl. 2) (2000) p. S3.

    Article  CAS  Google Scholar 

  19. A.P. Demchenko, J. Mol. Recognit. 14 (2002) p. 42.

    Article  Google Scholar 

  20. T. Imoto, T. Ueda, T. Tamura, Y. Isakari, Y. Abe, M. Inoue, T. Miki, K. Kawano, and H. Yamada, Protein Eng. 7 (1994) p. 743.

    Article  CAS  Google Scholar 

  21. Z. Feng, M.C. Butler, S.L. Alam, and S.N. Loh, J. Mol. Biol. 314 (2001) p. 153.

    Article  CAS  Google Scholar 

  22. R.C. Noonan, C.C. Carter, and C.K. Bagdas-sarian, Protein Sci. 11 (2002) p. 1424.

    Article  CAS  Google Scholar 

  23. X.S. Xie and H.P. Lu, J. Biol. Chem. 274 (1999) p. 15967.

    Article  CAS  Google Scholar 

  24. H. Sumi and J. Ulstrup, Biochim. Biophys. Acta 955 (1988) p. 26.

    Article  CAS  Google Scholar 

  25. Y. Shibata, Sci. Prog. 83 (2000) p. 193.

    CAS  Google Scholar 

  26. L.V. Abaturov, O. Lebedev Iu, and N.G. Nosova, Mol. Biol. (Moscow) 17 (1983) p. 543.

    CAS  Google Scholar 

  27. J.W. Chin, A.B. Martin, D.S. King, L. Wang, and P.G. Schultz, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) p. 11020.

    Article  CAS  Google Scholar 

  28. E.J. Sundberg and R.A. Mariuzza, Struct. Fold. Des. 8 (2000) p. R137.

  29. B. Ma, M. Shatsky, H.J. Wolfson, and R. Nussinov, Protein Sci. 11 (2002) p. 184.

    Article  CAS  Google Scholar 

  30. W.L. DeLano, M.H. Ultsch, A.M. de Vos, and J.A. Wells, Science 287 (2000) p. 1279.

    Article  CAS  Google Scholar 

  31. N. Vazquez-Laslop, E.E. Zheleznova, P.N. Markham, R.G. Brennan, and A.A. Neyfakh, Biochem. Soc. Trans. 28 (2000) p. 517.

    Article  CAS  Google Scholar 

  32. C. Zwahlen, S.C. Li, L.E. Kay, T. Pawson, and J.D. Forman-Kay, EMBO J. 19 (2000) p. 1505.

    Article  CAS  Google Scholar 

  33. W.L. DeLano, Curr. Opin. Struct. Biol. 12 (2002) p. 14.

    Article  CAS  Google Scholar 

  34. M. Gerstein and W. Krebs, Nucleic Acids Res. 26 (1998) p. 4280.

    Article  CAS  Google Scholar 

  35. B. Isralewitz, M. Gao, and K. Schulten, Curr. Opin. Struct. Biol. 11 (2001) p. 224.

    Article  CAS  Google Scholar 

  36. V. Vogel, W.E. Thomas, D.W. Craig, A. Krammer, and G. Baneyx, Tr ends Biotechnol. 19 (2001) p. 416.

    Article  CAS  Google Scholar 

  37. W.E. Thomas, E. Trintchina, M. Forero, V. Vogel, and E.V. Sokurenko, Cell 109 (2002) p. 913.

    Article  CAS  Google Scholar 

  38. G.I. Bell, Science 200 (1978) p. 618.

    Article  CAS  Google Scholar 

  39. E. Evans, Annu. Rev. Biophys. Biomol. Struct. 30 (2001) p. 105.

    Article  CAS  Google Scholar 

  40. D. Craig, A. Krammer, K. Schulten, and V. Vogel, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 5590.

    Article  CAS  Google Scholar 

  41. A.F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, and J.M. Fernandez, J. Mol. Biol. 319 (2002) p. 433.

    Article  CAS  Google Scholar 

  42. D. Craig, M. Gao, K. Schulten, and V. Vogel (2002) (unpublished manuscript).

  43. G. Baneyx, L. Baugh, and V. Vogel, Proc. Natl. Acad. Sci. U.S.A. 98 (2001) p. 14464.

    Article  CAS  Google Scholar 

  44. G. Baneyx, L. Baugh, and V. Vogel, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) p. 5139.

    Article  CAS  Google Scholar 

  45. F. Fukai, H. Takahashi, Y. Habu, N. Kubushiro, and T. Katayama, Biochem. Biophys. Res. Commun. 220 (1996) p. 394.

    Article  CAS  Google Scholar 

  46. F. Fukai, S. Hasebe, M. Ueki, M. Mutoh, C. Ohgi, H. Takahashi, K. Takeda, and T. Katayama, J. Biochem. (Tokyo) 121 (1997) p. 189.

    CAS  Google Scholar 

  47. K.C. Ingham, S.A. Brew, S. Huff, and S.V. Litvinovich, J. Biol. Chem. 272 (1997) p. 1718.

    Article  CAS  Google Scholar 

  48. C. Zhong, M. Chrzanowska-Wodnicka, J. Brown, A. Shaub, A.M. Belkin, and K. Burridge, J. Cell Biol. 141 (1998) p. 539.

    Article  CAS  Google Scholar 

  49. F. Fukai, S. Kamiya, T. Ohwaki, S. Goto, K. Akiyama, T. Goto, and T. Katayama, Cell Mol. Biol. 46 (2000) p. 145.

    CAS  Google Scholar 

  50. R. Kato, T. Ishikawa, S. Kamiya, F. Oguma, M. Ueki, S. Goto, H. Nakamura, T. Katayama, and F. Fukai, Clin. Cancer Res. 8 (2002) p. 2455.

    CAS  Google Scholar 

  51. A. Krammer, D. Craig, W.E. Thomas, K. Schulten, and V. Vogel, Matrix Biol. 21 (2002) p. 139.

    Article  CAS  Google Scholar 

  52. A. Krammer, H. Lu, B. Isralewitz, K. Schulten, and V. Vogel, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) p. 1351.

    Article  CAS  Google Scholar 

  53. J.E. Schwarzbauer and J.L. Sechler, Curr. Opin. Cell Biol. 11 (1999) p. 622.

    Article  CAS  Google Scholar 

  54. T. Ohashi, D.P. Kiehart, and H.P. Erickson, J. Cell Sci. 115 (2002) p. 1221.

    CAS  Google Scholar 

  55. T. Nishizaka, Q. Shi, and M.P. Sheetz, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) p. 692.

    Article  CAS  Google Scholar 

  56. H. Tran, R. Pankov, S.D. Tran, B. Hampton, W.H. Burgess, and K.M. Yamada, J. Cell Sci. 115 (2002) p. 2031.

    CAS  Google Scholar 

  57. V. Vogel and G. Baneyx, “Tissue Engineering: How Many Pieces to the Puzzle?” Annu. Rev. Biomed. Eng. (2002) in press.

    Google Scholar 

  58. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001).

    Google Scholar 

  59. N. Koumura, R.W. Zijlstra, R.A. van Delden, N. Harada, and B.L. Feringa, Nature 401 (1999) p. 152.

    Article  CAS  Google Scholar 

  60. B.L. Feringa, Acc. Chem. Res. 34 (2001) p. 504.

    Article  CAS  Google Scholar 

  61. J.F. Stoddart, Acc. Chem. Res. 34 (2001) p. 410.

    Article  CAS  Google Scholar 

  62. J.P. Sestelo and T.R. Kelly, Appl. Phys. A 75 (2002) p. 337.

    Article  CAS  Google Scholar 

  63. M.J. Schnitzer, K. Visscher, and S.M. Block, Nat. Cell Biol. 2 (2000) p. 718.

    Article  CAS  Google Scholar 

  64. G. Oster and H. Wang, Biochim. Biophys. Acta 1458 (2000) p. 482.

    Article  CAS  Google Scholar 

  65. W.R. Schief and J. Howard, Curr. Opin. Cell Biol. 13 (2001) p. 19.

    Article  CAS  Google Scholar 

  66. C. Bustamante, D. Keller, and G. Oster, Acc. Chem. Res. 34 (2001) p. 412.

    Article  CAS  Google Scholar 

  67. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita Jr., Nature 386 (1997) p. 299.

    Article  CAS  Google Scholar 

  68. R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno, Science 290 (2000) p. 1555.

    Article  CAS  Google Scholar 

  69. H. Hess and V. Vogel, J. Biotechnol. 82 (2001) p. 67.

    CAS  Google Scholar 

  70. H. Hess, J. Clemmens, D. Qin, J. Howard, and V. Vogel, Nano Lett. 1 (2001) p. 235.

    Article  CAS  Google Scholar 

  71. H. Hess, J. Clemmens, C.M. Matzke, D. Bachard, B.C. Bunker, and V. Vogel, Appl. Phys. A 75 (2002) p. 309.

    Article  CAS  Google Scholar 

  72. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, and T.Q. Uyeda, Biophys. J. 81 (2001) p. 1555.

    Article  CAS  Google Scholar 

  73. H. Hess, J. Howard, and V. Vogel, Nano Lett. 2 (2002) p. 113.

    Article  CAS  Google Scholar 

  74. H. Hess, J. Howard, and V. Vogel, Nano Lett. 2 (2002) p. 1113.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, V. Reverse Engineering: Learning from Proteins How to Enhance the Performance of Synthetic Nanosystems. MRS Bulletin 27, 972–978 (2002). https://doi.org/10.1557/mrs2002.304

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.304

Keywords

Navigation