Skip to main content

Programmable Self-Assembling Protein Nanomaterials: Current Status and Prospects

  • Chapter
  • First Online:
Engineered Living Materials

Abstract

Protein-based nanomaterials are increasingly engineered as platforms for applications in biomanufacturing, for biomedical purposes, and as structural and organizational components of new types of living materials. Advances in synthetic biology and computational protein design offer tremendous opportunities for the engineering of new types of protein building blocks that self-assemble autonomously into customizable materials with various morphologies and properties. As proteins are genetically encoded, material production is genetically programmable and can be achieved sustainably with microbial cell factories, or in the future, by using cell-free technologies. An overview will be provided of the different types of self-assembling protein materials currently designed, characterized, and functionalized for a range of applications. Finally, opportunities and challenges for the design of genetically programmable materials that self-organize into new types of hierarchical protein materials with emergent functions will be discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1D:

one-dimensional

2D:

two-dimensional

3D:

three-dimensional

ACP:

atmospheric cold plasma

ADH:

alcohol dehydrogenase

AF4:

asymmetric flow field-flow fractionation

AFM:

atomic force microscopy

AI:

aggregation index

AmDH:

amine dehydrogenase

AMP:

antimicrobial peptide

AP:

alkaline phosphatase

Bfr:

Escherichia coli bacterioferritin

BMC:

bacterial microcompartment

CBD:

chitin binding domain

CCMV:

cowpea chlorotic mottle virus

CD:

circular dichroism

CP:

bacteriophage P22 coat protein

Cp149:

hepatitis B virus

CR:

Congo red

Cryo-EM:

cryo-electron microscopy

DCS:

differential centrifugal sedimentation

DLS :

dynamic light scattering

DOX:

doxorubicin

Dps:

DNA-binding protein from starved cells

DSC:

differential scanning calorimeter

DyP:

dye-decolorizing peroxidase

E. coli :

Escherichia coli

EDTA:

ethylenediaminetetraacetic acid

ELP:

elastin-like polypeptide

ELS:

electrophoretic light scattering

ESEM:

environmental scanning electron microscopy

Eut:

ethanolamine utilization

FRET:

Förster resonance energy transfer

GBS:

group B Streptococcus

GBS-NN:

group B Streptococcus antigen

GFP+36:

green fluorescence protein with a charge of +36

GFP:

green fluorescent protein

GOX:

glucose oxidase

GuHCl:

guanidine hydrochloride

HDFM:

hyperspectral dark-field microscopy

HG12:

histidine-rich amphiphile

HRP:

horseradish peroxidase

HuHF:

human H ferritin

IMAC:

immobilized metal affinity chromatography

LS:

lumazine synthase

Mfp:

mussel foot protein

MnP:

manganese peroxidase

MRI:

magnetic resonance imaging

Mx:

Myxococcus xanthus

ncAA:

noncanonical amino acid

NTA:

nanoparticle tracking analysis

PAGE:

polyacrylamide gel electrophoresis

PDC:

pyruvate decarboxylase

PdR:

putidaredoxin reductase

PdX:

putidaredoxin

PEG:

poly(ethylene glycol)

PTM:

posttranslational modification

Qt:

Quasibacillus thermotolerans

RP-HPLC:

reverse phase high performance liquid chromatography

SAXS:

small angle X-ray scattering

SbpA:

Lysinibacillus sphaericus S-layer protein

SEC:

size exclusion chromatography

SEM:

scanning electron microscopy

S-layer:

surface layer

SP:

bacteriophage P22 scaffolding protein

SRCD:

synchrotron radiation circular dichroism

SrtA:

Staphylococcus aureus sortase

TCEP:

tris(2-carboxyethyl) phosphine

TEM:

transmission electron microscopy

TMV:

tobacco mosaic virus

TRPS:

tunable resistive pulse sensing

UAA:

unnatural amino acid

UV-Vis:

ultraviolet-visible light

VLP:

viruslike particle

γ-PFD:

gamma-prefoldin

References

  • Abdali Z et al (2020) Curli-mediated self-assembly of a fibrous protein scaffold for hydroxyapatite mineralization. ACS Synth Biol 9(12):3334–3343

    Article  CAS  PubMed  Google Scholar 

  • Aliyan A, Cook NP, Marti AA (2019) Interrogating amyloid aggregates using fluorescent probes. Chem Rev 119(23):11819–11856

    Article  CAS  PubMed  Google Scholar 

  • An Y, Manuguri SS, Malmström J (2020) Atomic force microscopy of proteins. In: Gerrard JA, Domigan LJ (eds) Protein nanotechnology: protocols, instrumentation, and applications. Springer US, New York, NY, pp 247–285

    Chapter  Google Scholar 

  • Arosio P et al (2016) Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Anal Biochem 504:7–13

    Article  CAS  PubMed  Google Scholar 

  • Arosio P, Elia L, Poli M (2017) Ferritin, cellular iron storage and regulation. IUBMB Life 69(6):414–422

    Article  CAS  PubMed  Google Scholar 

  • Aussignargues C et al (2016) Structure and Function of a bacterial microcompartment shell protein engineered to bind a [4Fe-4S] cluster. J Am Chem Soc 138(16):5262–5270

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y et al (2016) Quantitative packaging of active enzymes into a protein cage. Angew Chem Int Ed Engl 55:1531–1534

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Edwardson TGW, Hilvert D (2018a) Tailoring lumazine synthase assemblies for bionanotechnology. Chem Soc Rev 47(10):3543–3557

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Bader DLV, Hilvert D (2018b) Substrate sorting by a supercharged nanoreactor. J Am Chem Soc 140(3):860–863

    Article  CAS  PubMed  Google Scholar 

  • Babych M et al (2018) Engineering and evaluation of amyloid assemblies as nanovaccine against the Chikungunya virus. Nanoscale 10

    Google Scholar 

  • Bai Y et al (2020) Protein nanoribbons template enamel mineralization. Proc Natl Acad Sci U S A 117(32):19201–19208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale JB et al (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353(6297):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrendorff JBYH, Borras-Gas G, Pribil M (2020) Synthetic protein scaffolding at biological membranes. Trends Biotechnol 38(4):432–446

    Article  CAS  PubMed  Google Scholar 

  • Ben-Sasson AJ et al (2021) Design of biologically active binary protein 2D materials. Nature 589(7842):468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielajew BJ, Hu JC, Athanasiou KA (2020) Collagen: quantification, biomechanics and role of minor subtypes in cartilage. Nat Rev Mater 5(10):730–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne CR et al (2009) A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly. Biochemistry 48(8):1736–1742

    Article  CAS  PubMed  Google Scholar 

  • Bucciarelli S et al (2020) Disentangling the role of solvent polarity and protein solvation in folding and self-assembly of alpha-lactalbumin. J Colloid Interface Sci 561:749–761

    Article  CAS  PubMed  Google Scholar 

  • Bush J et al (2020) Synthesis of DNA origami scaffolds: current and emerging strategies. Molecules 25(15)

    Google Scholar 

  • Cannon KA, Ochoa JM, Yeates TO (2019) High-symmetry protein assemblies: patterns and emerging applications. Curr Opin Struct Biol 55:77–84

    Article  CAS  PubMed  Google Scholar 

  • Cao MW et al (2019) Self-assembly of short elastin-like amphiphilic peptides: effects of temperature, molecular hydrophobicity and charge distribution. Molecules 24(1)

    Google Scholar 

  • Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33(5):259–268

    Article  CAS  PubMed  Google Scholar 

  • Care A, Bergquist PL, Sunna A (2016) Solid-binding peptides: immobilisation strategies for extremophile biocatalysis in biotechnology. Biotechnol Extremophiles:637–674

    Google Scholar 

  • Cassidy-Amstutz C et al (2016) Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin. Biochemistry 55(24):3461–3468

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S et al (2019) Three-dimensional protein cage array capable of active enzyme capture and artificial chaperone activity. Nano Lett 19(6):3918–3924

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S et al (2020) Enzyme encapsulation by protein cages. RSC Adv 10(22):13293–13301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2014) Encapsulation of beta-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem 149:307–312

    Article  CAS  PubMed  Google Scholar 

  • Chen KH et al (2017) X-ray crystallographic structure of a giant double-walled peptide nanotube formed by a macrocyclic beta-sheet containing Abeta16-22. J Am Chem Soc 139(24):8102–8105

    Article  CAS  PubMed  Google Scholar 

  • Chen Z et al (2019a) Self-assembling 2D arrays with de novo protein building blocks. J Am Chem Soc 141(22):8891–8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2019b) Self-assembly of engineered protein nanocages into reversible ordered 3D superlattices mediated by zinc ions. Chem Commun 55(75):11299–11302

    Article  CAS  Google Scholar 

  • Chen WK et al (2019c) Self-assembled peptide nanofibers display natural antimicrobial peptides to selectively kill bacteria without compromising cytocompatibility. ACS Appl Mater Interfaces 11(32):28681–28689

    Article  CAS  PubMed  Google Scholar 

  • Chiesa G, Kiriakov S, Khalil AS (2020) Protein assembly systems in natural and synthetic biology. BMC Biol 18(1)

    Google Scholar 

  • Chng CP, Kitao A (2008) Thermal unfolding simulations of bacterial flagellin: insight into its refolding before assembly. Biophys J 94(10):3858–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi B et al (2016) Effective Delivery of antigen-encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10(8):7339–7350

    Article  CAS  PubMed  Google Scholar 

  • Chouhan D, Mandal BB (2020) Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater 103:24–51

    Article  CAS  PubMed  Google Scholar 

  • Clark DS, Glover DJ (2018) Controlled assembly of the filamentous chaperone gamma-prefoldin into defined nanostructures. Methods Mol Biol 1798:293–306

    Article  CAS  PubMed  Google Scholar 

  • Clenet D et al (2018) Biophysical virus particle specific characterization to sharpen the definition of virus stability. Eur J Pharm Biopharm 132:62–69

    Article  CAS  PubMed  Google Scholar 

  • Contreras H et al (2014) Characterization of a Mycobacterium tuberculosis nanocompartment and its potential cargo proteins. J Biol Chem 289(26):18279–18289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiati S et al (2018) Bioinspired detection sensor based on functional nanostructures of S-proteins to target the folate receptors in breast cancer cells. Sensors Actuators B Chem 267:224–230

    Article  CAS  Google Scholar 

  • DeBenedictis EP, Liu J, Keten S (2016) Adhesion mechanisms of curli subunit CsgA to abiotic surfaces. Sci Adv 2(11):e1600998

    Article  PubMed  PubMed Central  Google Scholar 

  • Demchuk AM, Patel TR (2020) The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv 41

    Google Scholar 

  • Dennis SJ et al (2018) Immunogenicity of plant-produced African horse sickness virus-like particles: implications for a novel vaccine. Plant Biotechnol J 16(2):442–450

    Article  CAS  PubMed  Google Scholar 

  • Dias AP et al (2020) Dendrimers in the context of nanomedicine. Int J Pharm 573

    Google Scholar 

  • Ding K et al (2018) Solution structures of engineered vault particles. Structure 26(4):619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey NC, Tripathi BP (2021) Nature inspired multienzyme immobilization: strategies and concepts. ACS Appl Bio Mater 4(2):1077–1114

    Article  CAS  PubMed  Google Scholar 

  • Edgell CL et al (2020) De novo designed protein-interaction modules for in-cell applications. ACS Synth Biol 9(2):427–436

    Article  CAS  PubMed  Google Scholar 

  • Eiben S et al (2019) Plant virus-based materials for biomedical applications: trends and prospects. Adv Drug Deliv Rev 145:96–118

    Article  CAS  PubMed  Google Scholar 

  • Engelborghs Y, Visser AJWG (2014) Fluorescence spectroscopy and microscopy methods and protocols preface. In: Fluorescence spectroscopy and microscopy: methods and protocols, vol 1076, pp V–XII

    Google Scholar 

  • Engler C et al (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553

    Article  PubMed  PubMed Central  Google Scholar 

  • Erskine E, MacPhee CE, Stanley-Wall NR (2018) Functional amyloid and other protein fibers in the biofilm matrix. J Mol Biol 430(20):3642–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JS (2019a) Composite materials design: biomineralization proteins and the guided assembly and organization of biomineral nanoparticles. Materials (Basel) 12(4)

    Google Scholar 

  • Evans JS (2019b) The biomineralization proteome: protein complexity for a complex bioceramic assembly process. Proteomics 19(16):e1900036

    Article  PubMed  Google Scholar 

  • Faulkner M et al (2019) Self-assembly stability and variability of bacterial microcompartment shell proteins in response to the environmental change. Nanoscale Res Lett 14(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson N et al (2006) General structural motifs of amyloid protofilaments. Proc Natl Acad Sci U S A 103(44):16248–16253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finbloom JA et al (2018) Evaluation of three morphologically distinct virus-like particles as nanocarriers for convection-enhanced drug delivery to glioblastoma. Nanomaterials (Basel) 8(12):1007

    Article  Google Scholar 

  • Flood DT et al (2021) Selenomethionine as an expressible handle for bioconjugations. Proc Natl Acad Sci U S A 118(8):e2005164118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frascotti G et al (2021) The vault nanoparticle: a gigantic ribonucleoprotein assembly involved in diverse physiological and pathological phenomena and an ideal nanovector for drug delivery and therapy. Cancers (Basel) 13(4):707

    Article  CAS  Google Scholar 

  • Frezzo JA, Montclare JK (2016) Natural composite systems for bioinspired materials. Adv Exp Med Biol 940:143–166

    Article  CAS  PubMed  Google Scholar 

  • Fu JL et al (2020) DNA-scaffolded proximity assembly and confinement of multienzyme reactions. Top Curr Chem 378(3)

    Google Scholar 

  • Fuenmayor J, Gòdia F, Cervera L (2017) Production of virus-like particles for vaccines. New Biotechnol 39:174–180

    Article  CAS  Google Scholar 

  • Geninatti Crich S et al (2015) Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells. Nanoscale 7(15):6527–6533

    Article  CAS  PubMed  Google Scholar 

  • Giessen TW, Silver PA (2016) Converting a natural protein compartment into a nanofactory for the size-constrained synthesis of antimicrobial silver nanoparticles. ACS Synth Biol 5(12):1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Giessen TW et al (2019) Large protein organelles form a new iron sequestration system with high storage capacity. elife 8:e46070

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilman J, Love J (2016) Synthetic promoter design for new microbial chassis. Biochem Soc Trans 44(3):731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilman J, Zulkower V, Menolascina F (2021) Using a design of experiments approach to inform the design of hybrid synthetic yeast promoters. Methods Mol Biol 2189:1–17

    Article  CAS  PubMed  Google Scholar 

  • Glass PJ et al (2000) Norwalk virus open reading frame 3 encodes a minor structural. Protein 74(14):6581–6591

    CAS  Google Scholar 

  • Gopal R, Schneemann A (2018) Production and application of insect virus-based VLPs. Methods Mol Biol 1776:125–141

    Article  CAS  PubMed  Google Scholar 

  • Gorbet MB, Sefton MV (2005) Endotoxin: the uninvited guest. Biomaterials 26(34):6811–6817

    Article  CAS  PubMed  Google Scholar 

  • Greber BJ, Sutter M, Kerfeld CA (2019) The plasticity of molecular interactions governs bacterial microcompartment shell assembly. Structure 27(5):749–763 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Mahalakshmi R (2020) Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. J Biol Chem 295(5):1181–1194

    Article  PubMed  Google Scholar 

  • Hagen AR et al (2018) In vitro assembly of diverse bacterial microcompartment shell architectures. Nano Lett 18(11):7030–7037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamley IW (2019) Protein assemblies: nature-inspired and designed nanostructures. Biomacromolecules 20(5):1829–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatlem D et al (2019) Catching a SPY: using the SpyCatcher-SpyTag and related systems for labeling and localizing bacterial proteins. Int J Mol Sci 20(9):2129

    Article  CAS  PubMed Central  Google Scholar 

  • Hildebrand M, Lerch SJL, Shrestha RP (2018) Understanding diatom cell wall silicification - moving forward. Front Mar Sci 5

    Google Scholar 

  • Hillebrandt N et al (2020) Integrated process for capture and purification of virus-like particles: enhancing process performance by cross-flow filtration. Front Bioeng Biotechnol 8:489

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong F et al (2017) DNA origami: scaffolds for creating higher order structures. Chem Rev 117(20):12584–12640

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2017) Escherichia coli-derived virus-like particles in vaccine development. npj Vaccines 2(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2019) Functionalization of bacterial microcompartment shell proteins with covalently attached heme. Front Bioeng Biotechnol 7:432

    Article  PubMed  Google Scholar 

  • Ito Y et al (2020) Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression. Nucleic Acids Res 48(22):13000–13012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson E et al (2015) Protein-templated biomimetic silica nanoparticles. Langmuir 31(12):3687–3695

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Thareja S (2019) In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol 47(1):524–539

    Article  CAS  PubMed  Google Scholar 

  • Jia L et al (2020) Expression and purification of amyloid β-protein, tau, and α-synuclein in Escherichia coli: a review. Crit Rev Biotechnol 40(4):475–489

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Giessen TW (2021) Advances in encapsulin nanocompartment biology and engineering. Biotechnol Bioeng 118(1):491–505

    Article  CAS  PubMed  Google Scholar 

  • Jutz G et al (2015) Ferritin: a versatile building block for bionanotechnology. Chem Rev 115(4):1653–1701

    Article  CAS  PubMed  Google Scholar 

  • Kalra AP et al (2020) All wired up: an exploration of the electrical properties of microtubules and tubulin. ACS Nano 14(12):16301–16320

    Article  CAS  Google Scholar 

  • Keeble AH, Howarth M (2020) Power to the protein: enhancing and combining activities using the Spy toolbox. Chem Sci 11(28):7281–7291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelwick RJR, Webb AJ, Freemont PS (2020) Biological materials: the next frontier for cell-free synthetic biology. Front Bioeng Biotechnol 8:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerfeld CA, Erbilgin O (2015) Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 23(1):22–34

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA et al (2018) Bacterial microcompartments. Nat Rev Microbiol 16(5):277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I et al (2014) A “Light-up” 1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. J Mater Chem B 2(38):6478–6486

    Article  CAS  PubMed  Google Scholar 

  • King NP et al (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336(6085):1171–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotopka BJ, Smolke CD (2020) Model-driven generation of artificial yeast promoters. Nat Commun 11(1):2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442):1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Krupova M, Kessler J, Bour P (2020) Recent trends in chiroptical spectroscopy: theory and applications of vibrational circular dichroism and raman optical activity. ChemPlusChem 85(3):561–575

    Article  CAS  PubMed  Google Scholar 

  • Kuadkitkan A et al (2021) Production of Zika virus virus-like particles. In: Pfeifer BA, Hill A (eds) Vaccine delivery technology: methods and protocols. Springer US, New York, NY, pp 183–203

    Chapter  Google Scholar 

  • Kuan SL, Bergamini FRG, Weil T (2018) Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 47(24):9069–9105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai YT, Cascio D, Yeates TO (2012) Structure of a 16-nm cage designed by using protein oligomers. Science 336(6085):1129

    Article  CAS  PubMed  Google Scholar 

  • Lan LY et al (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  PubMed  Google Scholar 

  • Larsen SH et al (1974) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249(452):74–77

    Article  CAS  PubMed  Google Scholar 

  • Le Vay K et al (2020) Controlling protein nanocage assembly with hydrostatic pressure. J Am Chem Soc 142(49):20640–20650

    Article  PubMed  Google Scholar 

  • Lechner CC, Becker CF (2014) A sequence-function analysis of the silica precipitating silaffin R5 peptide. J Pept Sci 20(2):152–158

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ et al (2018) Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm. Nat Chem Biol 14(2):142

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Palmer DJ, Warren MJ (2019a) Biotechnological advances in bacterial microcompartment technology. Trends Biotechnol 37(3):325–336

    Article  CAS  PubMed  Google Scholar 

  • Lee EB et al (2019b) Attachment of flagellin enhances the immunostimulatory activity of a hemagglutinin-ferritin nano-cage. Nanomedicine 17:223–235

    Article  CAS  PubMed  Google Scholar 

  • Lee TH et al (2020) Encapsulin carrier proteins for enhanced expression of antimicrobial peptides. Biotechnol Bioeng 117(3):603–613

    Article  CAS  PubMed  Google Scholar 

  • Li ML et al (2014) A novel calcium supplement prepared by phytoferritin nanocages protects against absorption inhibitors through a unique pathway. Bone 64:115–123

    Article  CAS  PubMed  Google Scholar 

  • Li C et al (2018) Tuning protein assembly pathways through superfast amyloid-like aggregation. Biomater Sci 6(4):836–841

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2019) Cargo-compatible encapsulation in virus-based nanoparticles. Nano Lett 19(4):2700–2706

    Article  CAS  PubMed  Google Scholar 

  • Li F et al (2020) Design and biosynthesis of functional protein nanostructures. Sci China Life Sci 63(8):1142–1158

    Article  CAS  PubMed  Google Scholar 

  • Liang M et al (2014) H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A 111(41):14900–14905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y-H, Chen Y-R (2015) A novel method for expression and purification of authentic amyloid-β with and without 15N labels. Protein Expr Purif 113:63–71

    Article  CAS  PubMed  Google Scholar 

  • Lim S et al (2019) Enhanced enzyme activity through scaffolding on customizable self-assembling protein filaments. Small 15(20)

    Google Scholar 

  • Limpouchova Z, Prochazka K (2016) Theoretical principles of fluorescence spectroscopy. In: Prochazka K (ed) Fluorescence studies of polymer containing systems. Springer, Berlin, pp 91–149

    Chapter  Google Scholar 

  • Lombardo D, Calandra P, Kiselev MA (2020) Structural characterization of biomaterials by means of small angle X-rays and neutron scattering (SAXS and SANS), and light scattering experiments. Molecules 25(23):5624

    Article  CAS  PubMed Central  Google Scholar 

  • Lonnerdal B et al (2006) Iron absorption from soybean ferritin in nonanemic women. Am J Clin Nutr 83(1):103–107

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Walker DJF (2019) Geobacter protein nanowires. Front Microbiol:10

    Google Scholar 

  • Mahalik JP et al (2016) Theoretical study of the initial stages of self-assembly of a carboxysome’s facet. ACS Nano 10(6):5751–5758

    Article  CAS  PubMed  Google Scholar 

  • Majerle A et al (2019) Synthetic biology for multiscale designed biomimetic assemblies: from designed self-assembling biopolymers to bacterial bioprinting. Biochemistry 58(16):2095–2104

    Article  CAS  PubMed  Google Scholar 

  • Malik L et al (2013) Self-assembly of designed coiled coil peptides studied by small-angle X-ray scattering and analytical ultracentrifugation. J Pept Sci 19(5):283–292

    Article  CAS  PubMed  Google Scholar 

  • Mateu MG (2016) Assembly, engineering and applications of virus-based protein nanoparticles. Adv Exp Med Biol 940:83–120

    Article  CAS  PubMed  Google Scholar 

  • Matsuura K (2018) Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chem Commun 54(65):8944–8959

    Article  CAS  Google Scholar 

  • McCausland HC, Komeili A (2020) Magnetic genes: studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet 16(2):e1008499

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng D et al (2018) Pulsed electric fields-modified ferritin realizes loading of rutin by a moderate pH transition. J Agric Food Chem 66(46):12404–12411

    Article  CAS  PubMed  Google Scholar 

  • Metskas LA, Rhoades E (2020) Single-molecule FRET of intrinsically disordered proteins. Annu Rev Phys Chem 71(71):391–414

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Srinivasan B, Jansen LET (2020) Stable inheritance of CENP-A chromatin: inner strength versus dynamic control. J Cell Biol 219(10)

    Google Scholar 

  • Mitsuzawa S et al (2009) The rosettazyme: a synthetic cellulosome. J Biotechnol 143(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Montemiglio LC et al (2019) Cryo-EM structure of the human ferritin-transferrin receptor 1 complex. Nat Commun 10(1):1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon H et al (2014) Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules 15(10):3794–3801

    Article  CAS  PubMed  Google Scholar 

  • Motomura K et al (2016) The C-terminal Zwitterionic sequence of CotB1 Is essential for biosilicification of the bacillus cereus spore coat. J Bacteriol 198(2):276–282

    Article  CAS  PubMed  Google Scholar 

  • Mrazek J et al (2014) Polyribosomes are molecular 3D nanoprinters that orchestrate the assembly of vault particles. ACS Nano 8(11):11552–11559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Juan A et al (2019) Latest advances in the development of eukaryotic vaults as targeted drug delivery systems. Pharmaceutics 11(7)

    Google Scholar 

  • Nandakumar A, Ito Y, Ueda M (2020) Solvent effects on the self-assembly of an amphiphilic polypeptide incorporating alpha-helical hydrophobic blocks. J Am Chem Soc 142(50):20994–21003

    Article  CAS  PubMed  Google Scholar 

  • Niederhuber MJ et al (2017) Superresolution microscopy of the beta-carboxysome reveals a homogeneous matrix. Mol Biol Cell 28(20):2734–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nooraei S et al (2021) Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol 19(1):59

    Article  CAS  Google Scholar 

  • O’Brien EJ, Bennett PM (1972) Structure of Straight flagella from a mutant Salmonella. J Mol Biol 70(1):133–152

    Article  PubMed  Google Scholar 

  • Okesola BO, Mata A (2018) Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem Soc Rev 47(10):3721–3736

    Article  CAS  PubMed  Google Scholar 

  • Oosterlaken BM, Vena MP, de With G (2021) In vitro mineralization of collagen. Adv Mater 33:e2004418

    Article  PubMed  Google Scholar 

  • Otzen DE, Oliveberg M, Hook F (2003) Adsorption of a small protein to a methyl-terminated hydrophobic surfaces: effect of protein-folding thermodynamics and kinetics. Colloids Surf B Biointerfaces 29(1):67–73

    Article  CAS  Google Scholar 

  • Pacheco MR et al (2020) Supramolecular protein polymers using mini-ferritin Dps as the building block. Org Biomol Chem 18(45):9300–9307

    Article  CAS  PubMed  Google Scholar 

  • Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98(5):2217–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan JD, Cui ZQ (2020) Self-assembled nanoparticles: exciting platforms for vaccination. Biotechnol J 15(12):e2000087

    Article  PubMed  Google Scholar 

  • Pan X, Kortemme T (2021) Recent advances in de novo protein design: principles, methods, and applications. J Biol Chem:100558

    Google Scholar 

  • Pang A et al (2014) Structural insights into higher order assembly and function of the bacterial microcompartment protein PduA. J Biol Chem 289(32):22377–22384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen M et al (2019) Correlative iPALM and SEM resolves virus cavity and Gag lattice defects in HIV virions. Eur Biophys J Biophys Lett 48(1):15–23

    Article  Google Scholar 

  • Peiroten A, Landete JM (2020) Natural and engineered promoters for gene expression in Lactobacillus species. Appl Microbiol Biotechnol 104(9):3797–3805

    Article  CAS  PubMed  Google Scholar 

  • Pignataro MF, Herrera MG, Dodero VI (2020) Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods. Molecules 25(20)

    Google Scholar 

  • Pitman M, Larsen J (2020) The characterization of self-assembled nanostructures in whole blood. Anal Methods 12(16):2068–2081

    Article  CAS  Google Scholar 

  • Plegaria JS et al (2019) Redox characterization of electrode-immobilized bacterial microcompartment shell proteins engineered to bind metal centers. ACS Appl Bio Mater 3(1):685–692

    Article  Google Scholar 

  • Pourakbari R et al (2019) Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Microchim Acta 186(12)

    Google Scholar 

  • Pum D, Toca-Herrera JL, Sleytr UB (2013) S-layer protein self-assembly. Int J Mol Sci 14(2):2484–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punia P et al (2021) Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment - a review. Ceram Int 47(2):1526–1550

    Article  CAS  Google Scholar 

  • Putri RM et al (2016) Labelling bacterial nanocages with photo-switchable fluorophores. ChemPhysChem 17(12):1815–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian CY et al (2020) Recent progress on the versatility of virus-like particles. Vaccine 8(1)

    Google Scholar 

  • Qin W et al (2020) Microbe-mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Adv Mater 32(22):e1907833

    Article  PubMed  Google Scholar 

  • Quin MB et al (2017) Spatial organization of multi-enzyme biocatalytic cascades. Org Biomol Chem 15(20):4260–4271

    Article  CAS  PubMed  Google Scholar 

  • Rad B et al (2015) Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. ACS Nano 9(1):180–190

    Article  CAS  PubMed  Google Scholar 

  • Raff J, et al (2016) S-layer-based nanocomposites for industrial applications. In: Protein-based engineered nanostructures, vol 940, pp 245–279

    Google Scholar 

  • Rahmanpour R, Bugg TD (2013) Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. FEBS J 280(9):2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Rambaldi DC et al (2009) In vitro amyloid Abeta(1-42) peptide aggregation monitoring by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. Anal Bioanal Chem 394(8):2145–2149

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem Biol Drug Des 74(2):101–120

    Article  CAS  PubMed  Google Scholar 

  • Reddington SC, Howarth M (2015) Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol 29:94–99

    Article  CAS  PubMed  Google Scholar 

  • Rivera M (2017) Bacterioferritin: structure, dynamics, and protein-protein interactions at play in iron storage and mobilization. Acc Chem Res 50(2):331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Perez C et al (2019) Biochemical and molecular characterization of N66 from the shell of Pinctada mazatlanica. PeerJ 7:e7212

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Oliveira T et al (2017) Archaeal S-layers: overview and current state of the art. Front Microbiol 8

    Google Scholar 

  • Rose F et al (2018) Temperature-induced self-assembly of the group B streptococcus (GBS) fusion antigen GBS-NN. Mol Pharm 15(7):2584–2593

    Article  CAS  PubMed  Google Scholar 

  • Rozycka M et al (2019) Lattice shrinkage by incorporation of recombinant starmaker-like protein within bioinspired calcium carbonate crystals. Chemistry 25(55):12740–12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rurup WF, Cornelissen JJLM, Koay MST (2015) Recombinant expression and purification of “virus-like” bacterial encapsulin protein cages. In: Protein cages: methods and protocols, vol 1252, pp 61–67

    Google Scholar 

  • Safavi MS et al (2017) Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature. Int J Pharm 529(1–2):303–309

    Article  CAS  PubMed  Google Scholar 

  • Samrot AV et al (2020) Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: a review. Int J Biol Macromol 165:3088–3105

    Article  CAS  PubMed  Google Scholar 

  • Sanchez P et al (2009) MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Trans 5:800–804

    Article  Google Scholar 

  • Sasaki E et al (2017) Structure and assembly of scalable porous protein cages. Nat Commun 8:14663

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheibel DM et al (2020) Post-translational modification mimicry for programmable assembly of elastin-based protein polymers. ACS Macro Lett 9(3):371–376

    Article  CAS  Google Scholar 

  • Schlesinger O et al (2017) Tuning of recombinant protein expression in Escherichia coli by manipulating transcription, translation initiation rates, and incorporation of noncanonical amino acids. ACS Synth Biol 6(6):1076–1085

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Dannert C, Lopez-Gallego F (2019) Advances and opportunities for the design of self-sufficient and spatially organized cell-free biocatalytic systems. Curr Opin Chem Biol 49:97–104

    Article  Google Scholar 

  • Schmidt-Dannert S et al (2018) Building a toolbox of protein scaffolds for future immobilization of biocatalysts. Appl Microbiol Biotechnol 102(19):8373–8388

    Article  CAS  PubMed  Google Scholar 

  • Schmitt DL, An S (2017) Spatial organization of metabolic enzyme complexes in cells. Biochemistry 56(25):3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Schoonen L, Nolte RJM, van Hest JCM (2016) Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic. Nanoscale 8(30):14467–14472

    Article  CAS  PubMed  Google Scholar 

  • Schoonen L et al (2017) Stabilization of a virus-like particle and its application as a nanoreactor at physiological conditions. Biomacromolecules 18(11):3492–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber A et al (2019) Self-assembly toolbox of tailored supramolecular architectures based on an amphiphilic protein library. Small 15(30):e1900163

    Article  PubMed  Google Scholar 

  • Schuster B (2018) S-layer protein-based biosensors. Biosensors (Basel) 8(2):40

    Article  Google Scholar 

  • Schwarz B, Uchida M, Douglas T (2017) Biomedical and catalytic opportunities of virus-like particles in nanotechnology. Adv Virus Res 97:1–60

    Article  CAS  PubMed  Google Scholar 

  • Selivanovitch E, Douglas T (2019) Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 36:38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo M-J, Schmidt-Dannert C (2021) Organizing multi-enzyme systems into programmable materials for biocatalysis. Catalysts 11(4)

    Google Scholar 

  • Sharma J, Douglas T (2020) Tuning the catalytic properties of P22 nanoreactors through compositional control. Nanoscale 12(1):336–346

    Article  CAS  PubMed  Google Scholar 

  • Sheehy EJ, Cunniffe GM, O’Brien FJ (2018) Collagen-based biomaterials for tissue regeneration and repair. In: Peptides and proteins as biomaterials for tissue regeneration and repair. Woodhead Publishing, pp 127–150

    Chapter  Google Scholar 

  • Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118(2):801–838

    Article  CAS  PubMed  Google Scholar 

  • Shen ZW et al (2020) Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomater Sci 8(7):2031–2039

    Article  CAS  PubMed  Google Scholar 

  • Shi L et al (2020) Effect of pH on properties of golden pompano skin collagen-based fibril gels by self-assembly in vitro. J Sci Food Agric 100(13):4801–4807

    Article  CAS  PubMed  Google Scholar 

  • Sigmund F et al (2019) Iron-sequestering nanocompartments as multiplexed electron microscopy gene reporters. ACS Nano 13(7):8114–8123

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB et al (2014) S-layers: principles and applications. FEMS Microbiol Rev 38(5):823–864

    Article  CAS  PubMed  Google Scholar 

  • Song Y et al (2015) Lumazine synthase protein nanoparticle-Gd(III)-DOTA conjugate as a T1 contrast agent for high-field MRI. Sci Rep 5:15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song IW et al (2017) Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage. Sci Rep 7(1):16212

    Article  PubMed  PubMed Central  Google Scholar 

  • Song XR et al (2019) Recent advances of shell matrix proteins and cellular orchestration in marine molluscan shell biomineralization. Front Mar Science 6

    Google Scholar 

  • Sonotaki S et al (2017) Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties. Biomater Sci 5(6):1082–1089

    Article  CAS  PubMed  Google Scholar 

  • Sorushanova A et al (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31(1)

    Google Scholar 

  • Spice AJ et al (2020) Synthesis and assembly of hepatitis B virus-like particles in a pichia pastoris cell-free system. Front Bioeng Biotechnol 8:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart PL (2017) Cryo-electron microscopy and cryo-electron tomography of nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(2)

    Google Scholar 

  • Strijbis K, Spooner E, Ploegh HL (2012) Protein ligation in living cells using sortase. Traffic 13(6):780–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su WC et al (2020) Ferritin-displayed GLP-1 with improved pharmacological activities and pharmacokinetics. Mol Pharm 17(5):1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Marelli B (2020) Polypeptide templating for designer hierarchical materials. Nat Commun 11(1):13

    Google Scholar 

  • Sutherland AR, Alam MK, Geyer CR (2019) Post-translational assembly of protein parts into complex devices by using SpyTag/SpyCatcher protein ligase. Chembiochem 20(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y et al (2016) Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533(7603):369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura A et al (2015) Packaging guest proteins into the encapsulin nanocompartment from Rhodococcus erythropolis N771. Biotechnol Bioeng 112(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H et al (2009) The structure of rat liver vault at 3.5 angstrom resolution. Science 323(5912):384–388

    Article  CAS  PubMed  Google Scholar 

  • Trampari S, Papagiannopoulos A, Pispas S (2019) Temperature-induced aggregation behavior in bovine pancreas trypsin solutions. Biochem Biophys Res Commun 515(2):282–288

    Article  CAS  PubMed  Google Scholar 

  • Uddin I et al (2018) A generic self-assembly process in microcompartments and synthetic protein nanotubes. Small:e1704020

    Google Scholar 

  • Ueki T et al (2019) Decorating the outer surface of microbially produced protein nanowires with peptides. ACS Synth Biol 8(8):1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Varanko AK, Su JC, Chilkoti A (2020) Elastin-like polypeptides for biomedical applications. Annu Rev Biomed Eng 22:343–369

    Article  CAS  PubMed  Google Scholar 

  • Varenne F et al (2019) Evaluation of zeta potential of nanomaterials by electrophoretic light scattering: fast field reversal versus Slow field reversal modes. Talanta 205:120062

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-González M, Wang C, Willner I (2020) Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat Catal 3(3):256–273

    Article  Google Scholar 

  • Wallace BA (2019) The role of circular dichroism spectroscopy in the era of integrative structural biology. Curr Opin Struct Biol 58:191–196

    Article  CAS  PubMed  Google Scholar 

  • Wang M et al (2015) Vault nanoparticles packaged with enzymes as an efficient pollutant biodegradation technology. ACS Nano 9(11):10931–10940

    Article  CAS  PubMed  Google Scholar 

  • Wang R et al (2019) Hierarchical assembly of elastin materials. Curr Opin Chem Eng 24:54–60

    Article  Google Scholar 

  • Wang Y et al (2020) Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res 48(12):6403–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegst UG et al (2015) Bioinspired structural materials. Nat Mater 14(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Werten MWT et al (2019) Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 37(5):642–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann-Bidlack FB et al (2007) pH triggered self-assembly of native and recombinant amelogenins under physiological pH and temperature in vitro. J Struct Biol 160(1):57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willies SC et al (2009) The binding of haem and zinc in the 1.9 A X-ray structure of Escherichia coli bacterioferritin. J Biol Inorg Chem 14(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Worsdorfer B, Woycechowsky KJ, Hilvert D (2011) Directed evolution of a protein container. Science 331(6017):589–592

    Article  PubMed  Google Scholar 

  • Worsdorfer B, Pianowski Z, Hilvert D (2012) Efficient in vitro encapsulation of protein cargo by an engineered protein container. J Am Chem Soc 134(2):909–911

    Article  CAS  PubMed  Google Scholar 

  • Xu K et al (2020) Immobilization of multi-enzymes on support materials for efficient biocatalysis. Front Bioeng Biotechnol 8:660

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu R (2002) Electrophoretic light scattering. In: Scarlett B (ed) Particle characterization: light scattering methods. Springer, Dordrecht, pp 289–343

    Google Scholar 

  • Yadav D, Dewangan HK (2021) PEGYLATION: an important approach for novel drug delivery system. J Biomater Sci-Polymer Edition 32(2):266–280

    Article  CAS  Google Scholar 

  • Yakupova EI et al (2019) Congo Red and amyloids: history and relationship. Biosci Rep 39

    Google Scholar 

  • Yang Z et al (2007) Encapsulation of platinum anticancer drugs by apoferritin. Chem Commun (Camb) 33:3453–3455

    Article  Google Scholar 

  • Yang R et al (2018) Effect of atmospheric cold plasma on structure, activity, and reversible assembly of the phytoferritin. Food Chem 264:41–48

    Article  CAS  PubMed  Google Scholar 

  • Yeates TO (2017) Geometric principles for designing highly symmetric self-assembling protein nanomaterials. Annu Rev Biophys 46:23–42

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Kara AA, Acarturk F (2020) Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 148:1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Young EJ et al (2017) Engineering the bacterial microcompartment domain for molecular scaffolding applications. Front Microbiol 8:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamora-Perez P et al (2018) Hyperspectral-enhanced dark field microscopy for single and collective nanoparticle characterization in biological environments. Materials 11(2):243

    Article  PubMed Central  Google Scholar 

  • Zhang YF, Hess H (2017) Toward rational design of high-efficiency enzyme cascades. ACS Catal 7(9):6018–6027

    Article  CAS  Google Scholar 

  • Zhang GQ, Quin MB, Schmidt-Dannert C (2018) Self-assembling protein scaffold system for easy in vitro coimmobilization of biocatalytic cascade enzymes. ACS Catal 8(6):5611–5620

    Article  CAS  Google Scholar 

  • Zhang G et al (2019a) Protein-based scaffolds for enzyme immobilization. Methods Enzymol 617:323–362

    Article  CAS  PubMed  Google Scholar 

  • Zhang G et al (2019b) Chapter 13 - Protein-based scaffolds for enzyme immobilization. In: Schmidt-Dannert C, Quin MB (eds) Methods in enzymology. Academic, pp 323–362

    Google Scholar 

  • Zhang WB et al (2020a) Rationally designed protein building blocks for programmable hierarchical architectures. Front Chem 8:23

    Article  Google Scholar 

  • Zhang CX, Zhang XR, Zhao GH (2020b) Ferritin nanocage: a versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nano 10(9)

    Google Scholar 

  • Zhao J, Yang P (2020) Amyloid-mediated fabrication of organic-inorganic hybrid materials and their biomedical applications. Adv Mater Interf 7(19)

    Google Scholar 

  • Zhou XM et al (2014) Self-assembly of amyloid fibrils that display active enzymes. ChemCatChem 6(7):1961–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zottig X et al (2020) Protein supramolecular structures: from self-assembly to nanovaccine design. Nano 10(5)

    Google Scholar 

Download references

Acknowledgments

Research on the development of self-assembling protein materials in the Schmidt-Dannert Laboratory has been supported by Defense Threat Reduction Agency Grant HDTRA-15-0004, Defense Advanced Research Projects Agency Contract HR0011-17-0038, National Science Foundation CBET-1916030, MnDRIVE, and the University of Minnesota’s Biocatalysis Initiative through the BioTechnology Institute. Kelly Wallin was supported by a predoctoral NIH training grant fellowship (5T32 GM008347) and by an NSF graduate research fellowship (CON-75851, Project 00074041).

Author Contributions

KKW, RZ, and CSD wrote this paper.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Schmidt-Dannert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallin, K., Zhang, R., Schmidt-Dannert, C. (2022). Programmable Self-Assembling Protein Nanomaterials: Current Status and Prospects. In: Srubar III, W.V. (eds) Engineered Living Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-92949-7_3

Download citation

Publish with us

Policies and ethics