Skip to main content

Advertisement

Log in

Super high-dielectric-constant oxide films for next-generation nanoelectronics and supercapacitors for energy storage

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Dielectrics are electrical insulator materials, polarizable by opposite displacement of positive and negative ionized atoms via electric fields across the material’s thickness. Dielectrics are used in energy-storage capacitors, as key components in modern micro-/nanoelectronics, high-frequency and mobile communication devices, and life-saving microchips and other devices such as defibrillators and pacemakers implantable in humans. A key dielectric parameter is the dielectric constant (k), which largely controls the capacitance in capacitors with nanoscale area and dielectric layer thickness. Extremely high dielectric constants (k ≥1000) were observed in oxides (e.g., La1.8Sr0.12NiO4) with relaxor/ferroelectric materials and in combined semiconducting bulk properties with highly resistive grain boundaries. Giant dielectric constant films have also been demonstrated, based on integrating relatively low-dielectric-constant oxides into nanolaminate structures (e.g., TiOx/Al2O3; TiO2/HfO2) with tailored sublayer thicknesses, interfaces, and oxygen atom distributions. This overview article addresses the science and technology of high-dielectric-constant oxide materials with different compositions and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2.
Figure 3
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (2001), http://public.itrs.net/Files/2003ITRS/Home2003.htm.

  2. R.M. Wallace, G. Wilk, MRS Bull. 27 (3), 186 (2002).

    Article  Google Scholar 

  3. Y. Chen, C. Wu, D. Riley, I. Mejia, J. Alcantar-Peña, O. Auciello, “Reliable High-K Dielectric Oxide-Based Nanolaminates for Next-Generation Logic Analog and Memory Semiconductor Devices,” presented at the Materials Research Society Spring Meeting, Symposium on Devices and Materials to Extend the CMOS Roadmap for Logic and Memory Applications, Session EP09-08, ALD, High K, Ge, 2D and Others, Phoenix, 2019, p. 273.

  4. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R Rep. 88, 1 (2014).

    Article  Google Scholar 

  5. G.E. Moore, Electronics 38 (8), (1965).

  6. K. Akatsuka, M.-A. Haga, Y. Ebina, M. Osada, K. Fukuda, T. Sasaki, ACS Nano 3, 1097 (2009).

    Article  CAS  Google Scholar 

  7. M. Osada, K. Akatsuka, Y. Ebina, H. Funakubo, K. Ono, K. Takada, T. Sasaki, ACS Nano 4, 5225 (2010).

    Article  CAS  Google Scholar 

  8. W. Kobayashi, I. Terasaki, Appl. Phys. Lett. 87, 032902 (2005).

    Article  Google Scholar 

  9. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001).

    Article  CAS  Google Scholar 

  10. E.P. Gusev, D.A. Buchanan, E. Cartier, A. Kumar, S. Guha, A. Callegari, S. Zafar, P.C. Jamison, D.A. Neumayer, M. Copel, M.A. Gribelyuk, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L.A. Ragnarsson, P. Ronsheim, K. Rim, R.J. Fleming, A. Mocuta, A. Ajmera, IEDM Tech. Dig., 455 (2001).

  11. A. Peláiz-Barranco, F. Calderón-Piñar, O. García-Zaldívar, Y. González-Abreu, IntechOpen-Open Access Peer-Reviewed Chapter (2012), doi:10.5772/52149.

  12. D. Schlom, J. Haeni, MRS Bull. 27, 198 (2002).

    Article  CAS  Google Scholar 

  13. W. Li, O. Auciello, R.N. Premnath, B. Kabius, Appl. Phys. Lett. 96, 162907 (2010).

    Article  Google Scholar 

  14. W. Li, Z. Chen, R.N. Premnath, B. Kabius, O. Auciello, J. Appl. Phys. 110. 024106 (2011).

    Article  Google Scholar 

  15. G. Lee, B.-K. Lai, C. Phatak, R.S. Katiyar, O. Auciello, Appl. Phys. Lett. 102, 142901 (2013).

    Article  Google Scholar 

  16. U.C. Chung, C. Elissalde, M. Maglione, C. Estournès, M. Paté, J.P. Ganne, Appl. Phys. Lett. 92, 042902 (2008).

    Article  Google Scholar 

  17. W. Zhang, L. Li, X.M. Chen, J. Appl. Phys. 108, 044104 (2010).

    Article  Google Scholar 

  18. C. Wu, I. Mejia, D. Riley, Y. Lee, Y. Chen, “Low Temperature Sub-Nanometer Periodic Stack Dielectrics,” US Patent 62/644,169 (2018).

  19. Y. Chen, C. Wu, D. Riley, I. Mejia, J. Alcantar-Peña, O. Auciello, Symposium: Devices and Materials to Extend the CMOS Roadmap for Logic and Memory Applications; Session EP09-08: ALD, High K, Ge, 2D and Others, MRS Spring Abstract book, p. 273 (2019).

  20. F. Mondon, S. Blonkowski, Microelectron. Reliab. 43 (8), 1259 (2003).

    Article  CAS  Google Scholar 

  21. G.I. Drandova, J.M. Beall, K.D. Decker, K.A. Salzman, Proc. Int. Conf. Comp. Semicond. Manuf. Technol. 1 (2003).

Download references

Acknowledgments

O.A. acknowledges the support of The University of Texas at Dallas, through his UTD Distinguished Endowed Chair. E.d.O. acknowledges the support of the Universidad Tecnológica de Panamá and SENACYT. The authors would like to thank M. Quevedo-Lopez (The University of Texas at Dallas/Materials Science and Engineering) for providing access to systems in his laboratory to perform some of the electrical measurements. Additionally, the authors acknowledge the partial support of the Night Vision and Electronics Directorate under Contract No. W909MY-16-C-0023.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auciello, O., Lee, G., Wu, C. et al. Super high-dielectric-constant oxide films for next-generation nanoelectronics and supercapacitors for energy storage. MRS Bulletin 45, 231–238 (2020). https://doi.org/10.1557/mrs.2020.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.67

Navigation