Skip to main content
Log in

Processing metallic materials far from equilibrium

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The field of solidification has evolved from metallurgical alchemy to a predictive science over the past century. Our particular focus is on metals and their alloys, whose thermophysical properties tend to differ distinctively from that of organic systems. Rapid advances in modeling efforts and real-time experiments have yielded a wealth of new and quantitative information across relevant length- and time scales, thereby expanding our understanding of the liquid-to-solid phase transition. The articles in this issue highlight some important recent developments in the field, including solidification at extreme rates, as well as the state-of-the-art computational and experimental techniques that allow us to probe the otherwise improbable. In light of this progress, we identify critical issues and open questions that point to future research directions in solidification science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. P. Rudolph, Handbook of Crystal Growth: Bulk Crystal Growth (Elsevier, Amsterdam, The Netherlands, 2014).

    Google Scholar 

  2. World Steel Association, “Global Crude Steel Output Increases by 3.4% in 2019,” https://www.worldsteel.org/media-centre/press-releases/2020/Global-crude-steel-output-increases-by-3.4—in-2019.html. Press release, January 27, 2020 (accessed August 25, 2020).

  3. D.M. Stefanescu, Science and Engineering of Casting Solidification (Springer, New York, 2015).

    Book  Google Scholar 

  4. M.E. Glicksman, R.J. Schaefer, J.D. Ayers, Metall. Trans. A 7, 1747 (1976).

    Article  Google Scholar 

  5. H. Honjo, S. Ohta, Y. Sawada, Phys. Rev. Lett. 55, 841 (1985).

    Article  CAS  Google Scholar 

  6. S. Akamatsu, G. Faivre, T. Ihle, Phys. Rev. E 51, 4751 (1995).

    Article  CAS  Google Scholar 

  7. S. Akamatsu, M. Perrut, S. Bottin-Rousseau, G. Faivre, Phys. Rev. Lett. 104, 056101 (2010).

    Article  Google Scholar 

  8. A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, A. Karma, Acta Mater. 129, 203 (2017).

    Article  CAS  Google Scholar 

  9. S. Moniri, H. Bale, T. Volkenandt, Y. Wang, J. Gao, T. Lu, K. Sun, R.O. Ritchie, A.J. Shahani, Small 16, 1906146 (2020).

    Article  CAS  Google Scholar 

  10. E. Ben-Jacob, P. Garik, Nature 343, 523 (1990).

    Article  Google Scholar 

  11. R. Trivedi, W. Kurz, Acta Metall. Mater. 42, 15 (1994).

    Article  CAS  Google Scholar 

  12. W.J. Boettinger, J.H. Perepezko, “Fundamentals of Solidification at High Rates, ” in Rapidly Solidified Alloys: Processes-Structures-Properties-Applications, H.H. Liebermann, Ed. (CRC Press, New York, 1993) pp. 17–78.

    Google Scholar 

  13. P. Magnin, W. Kurz, Metall. Trans. A 19, 1955 (1988).

    Article  Google Scholar 

  14. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  15. D.M. Herlach, Metals 4, 196 (2014).

    Article  Google Scholar 

  16. W.J. Boettinger, “Growth Kinetic Limitations During Rapid Solidification, ” in Rapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear, B.C. Giessen, M. Cohen, Eds. (Elsevier, Boston, 1982) pp. 15–31.

    Google Scholar 

  17. A.L. Greer, Nat. Mater. 14, 542 (2015).

    Article  CAS  Google Scholar 

  18. R. Trivedi, H. Miyahara, P. Mazumder, E. Simsek, S.N. Tewari, J. Cryst. Growth 222, 365 (2001).

    Article  CAS  Google Scholar 

  19. M.D. Dupouy, D. Camel, J.J. Favier, Acta Metall. 37, 1143 (1989).

    Article  CAS  Google Scholar 

  20. J.S. Park, R. Trivedi, J. Cryst. Growth 187, 511 (1998).

    Article  CAS  Google Scholar 

  21. K.A. Jackson, J.D. Hunt, Acta Metall. 13, 1212 (1965).

    Article  Google Scholar 

  22. L. Hachani, J. Wang, I. Kaldre, G. Salloum-Abou-Jaoude, O. Budenkova, G. Reinhart, K. Zaidat, N. Mangelinck, X. Li, H. Nguyen Thi, A. Bojarevics, Z.-M. Ren, L. Buligins, Y. Fautrelle, Mater. Sci. Forum 790–791, 375 (2014).

    Article  Google Scholar 

  23. D. Mazumdar, J.W. Evans, Steelmaking Processes (CRC Press, Boca Raton, FL, 2010).

    Google Scholar 

  24. R. Moreau, O. Laskar, M. Tanaka, D. Camel, Mater. Sci. Eng. A 173, 93 (1993).

    Article  Google Scholar 

  25. A. Kao, G. Djambazov, K. Pericleous, V. Voller, Magnetohydrodynamics 45, 305 (2009).

    Article  Google Scholar 

  26. T. Pinomaa, A. Laukkanen, N. Provatas, MRS Bull. 45 (11), 910 (2020).

    Article  Google Scholar 

  27. J.T. McKeown, A.J. Clarke, J.M.K. Wiezorek, MRS Bull. 45 (11), 916 (2020).

    Article  Google Scholar 

  28. T. Sun, W. Tan, L. Chen, A.D. Rollett, MRS Bull. 45 (11), 927 (2020).

    Article  Google Scholar 

  29. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).

    Article  Google Scholar 

  30. S. Feng, E. Liotti, M.D. Wilson, L. Jowitt, P.S. Grant, MRS Bull. 45 (11), 934 (2020).

    Article  Google Scholar 

  31. Y. Kobayashi, K. Dobara, H. Todoroki, C. Nam, K. Morishita, H. Yasuda, ISIJ Int. 60, 276 (2020).

    Article  CAS  Google Scholar 

  32. M.J. Kramer, M. Li, MRS Bull. 45 (11), 943 (2020).

    Article  Google Scholar 

  33. A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.R. Yavari, T. Sakurai, M. Chen, Nat. Mater. 10, 28 (2011).

    Article  CAS  Google Scholar 

  34. U. Hecht, L. Gránásy, T. Pusztai, B. Böttger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S.G. Fries, B. Legendre, S. Rex, Mater. Sci. Eng. R Rep. 46, 1 (2004).

    Article  Google Scholar 

  35. W. Steurer, J. Dshemuchadse, Intermetallics (Oxford University Press, Oxford, UK, 2016).

    Book  Google Scholar 

  36. P. Gille, “Solidification, ” in Basics of Thermodynamics and Phase Transitions in Complex Intermetallics, E. Belin-Ferré, Ed. (World Scientific, Hackensack, NJ, 2008), pp. 73–97.

    Chapter  Google Scholar 

  37. I. Han, X. Xiao, A.J. Shahani, Sci. Rep. 7, 17407 (2017).

    Article  Google Scholar 

  38. G. Kurtuldu, K.F. Shamlaye, J.F. Löffler, Proc. Natl. Acad. Sci. U.S.A. 115, 6123 (2018).

    Article  CAS  Google Scholar 

  39. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57, 941 (2009).

    Article  CAS  Google Scholar 

  40. W. Chen, L. Zhang, J. Phase Equilib. Diffus. 38, 457 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin J. Shahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahani, A.J., Clarke, A.J. Processing metallic materials far from equilibrium. MRS Bulletin 45, 906–909 (2020). https://doi.org/10.1557/mrs.2020.269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.269

Navigation