Skip to main content
Log in

Separation using self-assembled materials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

One of the leading challenges in chemical sciences is the separation of complex mixtures. This is of vital importance for areas such as commodity chemical generation, where there is a need for the generation of high-purity chemical streams. Due to this, there has been a strong push toward the investigation of new materials capable of achieving chemoselective separation, with self-assembled materials having shown a great deal of promise for such separations. Many self-assembled materials are desirable candidates due to their low-cost synthesis, structural self-regulation, tunable properties, and an overall ease of composite material preparation. In this article, we aim to introduce examples of novel self-assembled materials and their practical usage in chemical separations. The specific approaches to fabricate these materials, as well as the strengths and shortcomings associated with their structures, will also be described. The strategies presented here will emphasize the production and employment of nonconventional self-assembled materials that exhibit a high potential for the advancement of the science of chemical separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. D.S. Sholl, R.P. Lively, Nature 532, 435 (2016).

    Article  Google Scholar 

  2. G. Verma, P.A. Hassan, Phys. Chem. Chem. Phys. 15, 17016 (2013).

    Article  CAS  Google Scholar 

  3. K. Zhu, D. Wang, J. Liu, Nano Res. 2, 1 (2010).

    Article  CAS  Google Scholar 

  4. V.K. Praveen, B. Vedhanarayanan, A. Mal, R.K. Mishra, A. Ajayaghosh, Acc. Chem. Res. 53, 496 (2020).

    Article  CAS  Google Scholar 

  5. P. van Rijn, M. Tutus, C. Kathrein, L. Zhu, M. Wessling, U. Schwaneberg, A. Boker, Chem. Soc. Rev. 42, 6578 (2013).

    Article  CAS  Google Scholar 

  6. K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L.K. Shrestha, J.P. Hill, Sci. Technol. Adv. Mater. 20, 51 (2019).

    Article  CAS  Google Scholar 

  7. M.S. Denny, J.C. Moreton, L. Benz, S.M. Cohen, Nat. Rev. Mater. 1, 16078 (2016).

    Article  CAS  Google Scholar 

  8. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Adv. Mater. 30, 1704303 (2018).

    Article  CAS  Google Scholar 

  9. H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.-C. Zhou, Mater. Today 21, 108 (2018).

    Article  CAS  Google Scholar 

  10. P. Kumar, A. Deep, K.-H. Kim, Trends Anal. Chem. 73, 39 (2015).

    Article  CAS  Google Scholar 

  11. A.E. Baumann, D.A. Burns, B. Liu, V.S. Thoi, Commun. Chem. 2, 86 (2019).

    Article  Google Scholar 

  12. C. Carrillo-Carrion, Anal. Bioanal. Chem. 412, 37 (2020).

    Article  CAS  Google Scholar 

  13. Q. Gu, H.Y. Ng, D. Zhao, J. Wang, APL Mater. 8, 040902 (2020).

    Article  CAS  Google Scholar 

  14. V. Pascanu, G. Gonzalez Miera, A.K. Inge, B. Martin-Matute, J. Am. Chem. Soc. 141, 7223 (2019).

    Article  CAS  Google Scholar 

  15. H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, Science 341, 974 (2013).

    Article  CAS  Google Scholar 

  16. R.-B. Lin, S. Xiang, W. Zhou, B. Chen, Chemistry 6, 337 (2020).

    Article  CAS  Google Scholar 

  17. Z. Kang, L. Fan, D. Sun, J. Mater. Chem. A 5, 10073 (2017).

    Article  CAS  Google Scholar 

  18. NOAA, Global Climate Report—April 2020, https://www.ncdc.noaa.gov/sotc/global/202004.

  19. R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Coord. Chem. Rev. 378, 87 (2019).

    Article  CAS  Google Scholar 

  20. L. Bastin, P.S. Bárcia, E.J. Hurtado, J.A.C. Silva, A.E. Rodrigues, B. Chen, J. Phys. Chem. C 112, 1575 (2008).

    Article  CAS  Google Scholar 

  21. R.L. Siegelman, T.M. McDonald, M.I. Gonzalez, J.D. Martell, P.J. Milner, J.A. Mason, A.H. Berger, A.S. Bhown, J.R. Long, J. Am. Chem. Soc. 139, 10526 (2017).

    Article  CAS  Google Scholar 

  22. Y. Ye, Z. Ma, R.B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 141, 4130 (2019).

    Article  CAS  Google Scholar 

  23. S.C. Xiang, Z. Zhang, C.G. Zhao, K. Hong, X. Zhao, D.R. Ding, M.H. Xie, C.D. Wu, M.C. Das, R. Gill, K.M. Thomas, B. Chen, Nat. Commun. 2, 204 (2011).

    Article  CAS  Google Scholar 

  24. H. Kim, S. Yang, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, A.S. Umans, O.M. Yaghi, E.N. Wang, Science 356, 430 (2017).

    Article  CAS  Google Scholar 

  25. G. Dong, H. Li, V. Chen, J. Mater. Chem. A 1, 4610 (2013).

    Article  CAS  Google Scholar 

  26. L.M. Robeson, J. Membr. Sci. 62, 165 (1991).

    Article  CAS  Google Scholar 

  27. G. Yu, X. Zou, L. Sun, B. Liu, Z. Wang, P. Zhang, G. Zhu, Adv. Mater. 31, 1806853 (2019).

    Article  CAS  Google Scholar 

  28. S. Chaemchuen, J. Wang, A. Gilani, F. Francis Resour.-Effic. Technol. 1, 1 (2018).

    Article  Google Scholar 

  29. J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodríguez, C. Belver, Catalysts 9, 52 (2019).

    Article  CAS  Google Scholar 

  30. M. Kadhom, B. Deng, Appl. Mater. Today 11, 219 (2018).

    Article  Google Scholar 

  31. S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.-W. Ji, B.-H. Jeon, Coord. Chem. Rev. 380, 330 (2019).

    Article  CAS  Google Scholar 

  32. M. Mon, R. Bruno, J. Ferrando-Soria, D. Armentano, E. Pardo, J. Mater. Chem. A 6, 4912 (2018).

    Article  CAS  Google Scholar 

  33. A. Elrasheedy, N. Nady, M. Bassyouni, A. El-Shazly, Membranes 9, 88 (2019).

    Article  CAS  Google Scholar 

  34. L. Bellarosa, S. Calero, N. Lopez, Phys. Chem. Chem. Phys. 14, 7240 (2012).

    Article  CAS  Google Scholar 

  35. S. Wang, J. Wang, W. Cheng, X. Yang, Z. Zhang, Y. Xu, H. Liu, Y. Wu, M. Fang, Dalton Trans. 44, 8049 (2015).

    Article  CAS  Google Scholar 

  36. L. Wang, X. Zhao, J. Zhang, Z. Xiong, Environ. Sci. Pollut. Res. Int. 24, 14198 (2017).

    Article  CAS  Google Scholar 

  37. H. Saleem, U. Rafique, R.P. Davies, Microporous Mesoporous Mater. 221, 238 (2016).

    Article  CAS  Google Scholar 

  38. Q. Bu, B. Wang, J. Huang, S. Deng, G. Yu, J. Hazard. Mater. 262, 189 (2013).

    Article  CAS  Google Scholar 

  39. W.G. Jin, W. Chen, P.H. Xu, X.W. Lin, X.C. Huang, G.H. Chen, F. Lu, X.M. Chen, Chemistry 23, 13058 (2017).

    Article  CAS  Google Scholar 

  40. X. Lan, H. Zhang, P. Bai, X. Guo, Microporous Mesoporous Mater. 231, 40 (2016).

    Article  CAS  Google Scholar 

  41. C. Wang, X. Liu, J.P. Chen, K. Li, Sci. Rep. 5, 16613 (2015).

    Article  CAS  Google Scholar 

  42. Z.-Q. Bai, L.-Y. Yuan, L. Zhu, Z.-R. Liu, S.-Q. Chu, L.-R. Zheng, J. Zhang, Z.-F. Chai, W.-Q. Shi, J. Mater. Chem. A 3, 525 (2015).

    Article  CAS  Google Scholar 

  43. B.K. Jung, J.W. Jun, Z. Hasan, S.H. Jhung, Chem. Eng. J. 267, 9 (2015).

    Article  CAS  Google Scholar 

  44. X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, J. Gu, ACS Appl. Mater. Interfaces 7, 223 (2015).

    Article  CAS  Google Scholar 

  45. A.N. Meng, L.X. Chaihu, H.H. Chen, Z.Y. Gu, Sci. Rep. 7, 6297 (2017).

    Article  CAS  Google Scholar 

  46. Y.-C. He, J. Yang, W.-Q. Kan, H.-M. Zhang, Y.-Y. Liu, J.-F. Ma, J. Mater. Chem. A 3, 1675 (2015).

    Article  CAS  Google Scholar 

  47. X.L. Liu, Y.S. Li, G.Q. Zhu, Y.J. Ban, L.Y. Xu, W.S. Yang, Angew. Chem. Int. Ed. 50, 10636 (2011).

    Article  CAS  Google Scholar 

  48. H. Wang, S. Zhao, Y. Liu, R. Yao, X. Wang, Y. Cao, D. Ma, M. Zou, A. Cao, X. Feng, B. Wang, Nat. Commun. 10, 4204 (2019).

    Article  CAS  Google Scholar 

  49. P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, S. Kaskel, Microporous Mesoporous Mater. 120, 325 (2009).

    Article  CAS  Google Scholar 

  50. H. Wang, T.S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, Z. Chen, M. Hong, W. Meier, Small 8, 1185 (2012).

    Article  CAS  Google Scholar 

  51. L. Cheng, L. Yang, F. Meng, Z. Zhong, Adv. Healthc. Mater. 7, 1800685 (2018).

    Article  CAS  Google Scholar 

  52. V. Chimisso, V. Maffeis, D. Hurlimann, C.G. Palivan, W. Meier, Macromol. Biosci. 20, 1900257 (2020).

    Article  CAS  Google Scholar 

  53. C.K. Wong, X. Qiang, A.H.E. Müller, A.H. Gröschel, Prog. Polym. Sci. 102, 101211 (2020).

    Article  CAS  Google Scholar 

  54. N.J.W. Penfold, J. Yeow, C. Boyer, S.P. Armes, ACS Macro Lett. 8, 1029 (2019).

    Article  CAS  Google Scholar 

  55. A. Jain, C. Weathers, J. Kim, M.D. Meyer, W.S. Walker, Q. Li, R. Verduzco, Mol. Syst. Des. Eng. 4, 348 (2019).

    Article  CAS  Google Scholar 

  56. S. Liu, Z. Wang, M. Ban, P. Song, X. Song, B. Khan, J. Membr. Sci. 566, 168 (2018).

    Article  CAS  Google Scholar 

  57. H. Yu, X. Qiu, S.P. Nunes, K.V. Peinemann, Nat. Commun. 5, 4110 (2014).

    Article  CAS  Google Scholar 

  58. F.A. AlMarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Desalination 342, 3 (2014).

    Article  CAS  Google Scholar 

  59. Y. Zhang, N.E. Almodovar-Arbelo, J.L. Weidman, D.S. Corti, B.W. Boudouris, W.A. Phillip, NPJ Clean Water 1, 2 (2018).

    Article  Google Scholar 

  60. P. Kaner, P. Bengani-Lutz, I. Sadeghi, A. Asatekin, Technology 04, 217 (2017).

    Article  Google Scholar 

  61. J. Glater, Desalination 117, 297 (1998).

    Article  CAS  Google Scholar 

  62. P.S. Zhong, T.-S. Chung, K. Jeyaseelan, A. Armugam, J. Membr. Sci. 407, 27 (2012).

    Article  CAS  Google Scholar 

  63. X. Lu, X. Feng, Y. Yang, J. Jiang, W. Cheng, C. Liu, M. Gopinadhan, C.O. Osuji, J. Ma, M. Elimelech, Nat. Commun. 10, 2347 (2019).

    Article  CAS  Google Scholar 

  64. A.K. An, J. Guo, S. Jeong, E.J. Lee, S.A.A. Tabatabai, T. Leiknes, Water Res. 103, 362 (2016).

    Article  CAS  Google Scholar 

  65. H.J. Zhou, G.W. Yang, Y.Y. Zhang, Z.K. Xu, G.P. Wu, ACS Nano 12, 11471 (2018).

    Article  CAS  Google Scholar 

  66. S. Pullen, G.H. Clever, Acc. Chem. Res. 51, 3052 (2018).

    Article  CAS  Google Scholar 

  67. F.J. Rizzuto, L.K.S. von Krbek, J.R. Nitschke, Nat. Rev. Chem. 3, 204 (2019).

    Article  Google Scholar 

  68. M.A. Andres, A. Carne-Sanchez, J. Sanchez-Lainez, O. Roubeau, J. Coronas, D. Maspoch, I. Gascon, Chemistry 26, 143 (2020).

    Article  CAS  Google Scholar 

  69. B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A.P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, E. Sivaniah, Nat. Energy 2, 17086 (2017).

    Article  CAS  Google Scholar 

  70. J.E. Bachman, Z.P. Smith, T. Li, T. Xu, J.R. Long, Nat. Mater. 15, 845 (2016).

    Article  CAS  Google Scholar 

  71. X. Liu, X. Wang, A.V. Bavykina, L. Chu, M. Shan, A. Sabetghadam, H. Miro, F. Kapteijn, J. Gascon, ACS Appl. Mater. Interfaces 10, 21381 (2018).

    Article  CAS  Google Scholar 

  72. E.V. Perez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, J. Membr. Sci. 463, 82 (2014).

    Article  CAS  Google Scholar 

  73. W. Brenner, T.K. Ronson, J.R. Nitschke, J. Am. Chem. Soc. 139, 75 (2017).

    Article  CAS  Google Scholar 

  74. C.E. Bostrom, P. Gerde, A. Hanberg, B. Jernstrom, C. Johansson, T. Kyrklund, A. Rannug, M. Tornqvist, K. Victorin, R. Westerholm, Environ. Health Perspect. 110 (3), 451 (2002).

    CAS  Google Scholar 

  75. A. Narita, X.Y. Wang, X. Feng, K. Mullen, Chem. Soc. Rev. 44, 6616 (2015).

    Article  CAS  Google Scholar 

  76. D. Zhang, T.K. Ronson, R. Lavendomme, J.R. Nitschke, J. Am. Chem. Soc. 141, 18949 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the US Department of Energy, National Energy Technology Laboratory through NETL-Penn State University Coalition for Fossil Energy Research (UCFER, Contract No. DE-FE0026825) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Chen.

Supplementary Materials

Supplementary Materials

Fan Chen is a graduate student researcher at Texas A&M University. She received her BSc degree in chemistry from the Beijing Institute of Technology, China, in 2018. Her research includes the fabrication of metal–organic framework-based devices for pollutant filtration. Her current research focuses on the manufacture of porous polymer network-based mixed-matrix membranes for CO2/N2 separation and hollow fibers for direct carbon capture from air. Chen can be reached by email at fanchen2018@tamu.edu.

Gregory S. Day is a graduate student researcher in the Department of Chemistry at Texas A&M University. He received his BA and MS degrees in chemistry from Brandeis University in 2010. He was a research technician in the chemical industry. His current research focuses on the structure and property relationships of amorphous porous materials. Day can be reached by email at grsday@tamu.edu.

Hong-Cai Joe Zhou has been a full professor since 2008, a Davidson Professor of Science since 2014, and a Robert A. Welch Chair in Chemistry since 2015 at Texas A&M University. He obtained his PhD degree in inorganic chemistry and metal–organic frameworks in 2000 from Texas A&M University. He completed postdoctoral research at Harvard University, joined the faculty of Miami University, Oxford, in 2002, and was awarded tenure in 2007. His research focuses on the discovery of synthetic methods to obtain robust framework materials with unique catalytic activities or desirable properties for clean-energy-related applications such as gas storage and catalysis. Zhou can be reached by email at zhouh@tamu.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Day, G.S. & Zhou, HC. Separation using self-assembled materials. MRS Bulletin 45, 823–831 (2020). https://doi.org/10.1557/mrs.2020.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.246

Navigation