Skip to main content
Log in

Chemical and bonding analysis of liquids using liquid cell electron microscopy

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Liquid cell transmission electron microscopy (TEM) has become an essential tool for studying the structure and properties of both hard and soft condensed-matter samples, as well as liquids themselves. Liquid cell sample holders, often consisting of two thin window layers separating the liquid sample from the high vacuum of the microscope column, have been designed to control in situ conditions, including temperature, voltage/current, or flow through the window region. While high-resolution and time-resolved TEM imaging probes the structure, shape, and dynamics of liquid cell samples, information about the chemical composition and spatially resolved bonding is often difficult to obtain due to the liquid thickness, the window layers, the holder configuration, or beam-induced radiolysis. In this article, we review different approaches to quantitative liquid cell electron microscopy, including recent developments to perform energy-dispersive x-ray and electron energy-loss spectroscopy experiments on samples in a liquid environment or the liquid itself. We also cover graphene liquid cells and other ultrathin window layer holders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. L. Marton, Bull. Cl. Sci. Acad. R. Belg. 20, 439 (1934).

    Google Scholar 

  2. E. Ruska, Kolloid-Zeitschrift 100, 212 (1942).

    Google Scholar 

  3. I.M. Abrams, J.W. McBain, J. Appl. Phys. 15 607 (1944).

    Google Scholar 

  4. L. Marton, Rep. Prog. Phys. 10, 204 (1944).

    Google Scholar 

  5. F.M. Ross, J. Tersoff, M.C. Reuter, Phys. Rev. Lett. 95, 146104 (2005).

    Google Scholar 

  6. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  7. L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, S.E. Mick, Microsc. Res. Tech. 72, 208 (2009).

    Google Scholar 

  8. H. Zheng, R.K. Smith, Y.W. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos, Science 324, 1309 (2009).

    Google Scholar 

  9. B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.G. Zhang, K.T. Mueller, N.D. Browning, Nano Lett. 15, 2168 (2015).

    Google Scholar 

  10. S. Keskin, N. de Jonge, Nano Lett. 18, 7435 (2018).

    Google Scholar 

  11. H. Cho, M.R. Jones, S.C. Nguyen, M.R. Hauwiller, A. Zettl, A.P. Alivisatos, Nano Lett. 17, 414 (2017).

    Google Scholar 

  12. M.E. Holtz, Y. Yu, J. Gao, H.D. Abruna, D.A. Muller, Microsc. Microanal. 19, 1027 (2013).

    Google Scholar 

  13. R.R. Unocic, L. Baggetto, G.M. Veith, J.A. Agular, K.A. Unocic, R.L. Sacci, N.J. Dudney, K.L. More, Chem. Commun. 51, 16377 (2015).

    Google Scholar 

  14. E.A. Lewis, S.J. Haigh, T.J. Slater, Z. He, M.A. Kulzick, M.G. Burke, N.J. Zaluzec, Chem. Commun. 50, 10019 (2014).

    Google Scholar 

  15. C. Wang, T. Shokuhfar, R.F. Klie, Adv. Mater. 28, 7716 (2016).

    Google Scholar 

  16. M.R. Hauwiller, J.C. Ondry, C.M. Chan, P. Khandekar, J. Yu, A.P. Alivisatos, J. Am. Chem. Soc. 141, 4428 (2019).

    Google Scholar 

  17. M.A. Aronova, R.D. Leapman, MRS Bull. 37, 53 (2012).

    Google Scholar 

  18. J.M. Yuk, K. Kim, B. Aleman, W. Regan, J.H. Ryu, J. Park, P. Ercius, H.M. Lee, A.P. Alivisatos, M.F. Crommie, J.Y. Lee, A. Zettl, Nano Lett. 11, 3290 (2011).

    Google Scholar 

  19. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, Science 336, 61 (2012).

    Google Scholar 

  20. D.J. Kelly, M. Zhou, N. Clark, M.J. Hamer, E.A. Lewis, A.M. Rakowski, S.J. Haigh, R.V. Gorbachev, Nano Lett. 18, 1168 (2018).

    Google Scholar 

  21. J. Park, H. Elmlund, P. Ercius, J.M. Yuk, D.T. Limmer, Q. Chen, K. Kim, S.H. Han, D.A. Weitz, A. Zettl, A.P. Alivisatos, Science 349, 290 (2015).

    Google Scholar 

  22. B.H. Kim, J. Heo, S. Kim, C.F. Reboul, H. Chun, D. Kang, H. Bae, H. Hyun, J. Lim, H. Lee, B. Han, T. Hyeon, A.P. Alivisatos, P. Ercius, H. Elmlund, J. Park, Science 368, 60 (2020).

    Google Scholar 

  23. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, Science 336, 61 (2012).

    Google Scholar 

  24. J.M. Yuk, H.K. Seo, J.W. Choi, J.Y. Lee, ACS Nano 8, 7478 (2014).

    Google Scholar 

  25. A. de Clercq, W. Dachraoui, O. Margeat, K. Pelzer, C.R. Henry, S. Giorgio, J. Phys. Chem. Lett. 5, 2126 (2014).

    Google Scholar 

  26. C. Wang, Q. Qiao, T. Shokuhfar, R.F. Klie, Adv. Mater. 26, 3410 (2014).

    Google Scholar 

  27. A.J. Donovan, J. Kalkowski, M. Szyrnusiak, C.H. Wang, S.A. Smith, R.F. Klie, J.H. Morrissey, Y. Liu, Biomacromolecules 17, 2572 (2016).

    Google Scholar 

  28. A.R. Ribeiro, A. Mukherjee, X. Hu, S. Shafien, R. Ghodsi, K. He, S. Gemini-Piperni, C. Wang, R.F. Klie, T. Shokuhfar, R. Shahbazian-Yassar, R. Borojevic, L.A. Rocha, J.M. Granjeiro, Nanoscale 9, 10684 (2017).

    Google Scholar 

  29. K.H. Nagamanasa, H. Wang, S. Granick, Adv. Mater. 29, 1703555 (2017).

    Google Scholar 

  30. J.R. Jokisaari, J.A. Hachtel, X. Hu, A. Mukherjee, C. Wang, A. Konecna, T.C. Lovejoy, N. Dellby, J. Aizpurua, O.L. Krivanek, J.-C. Idrobo, R.F. Klie, Adv. Mater. 30, 1802702 (2018).

    Google Scholar 

  31. H. Wang, B. Li, Y.-J. Kim, O.-H. Kwon, S. Granick, Proc. Natl. Acad. Sci. U.S.A. 117, 1283 (2020).

  32. D.J. Banner, E. Firlar, J. Jakubonis, Y. Baggia, J.K. Osborn, R. Shahbazian-Yassar, C.M. Megaridis, T. Shokuhfar, Int. J. Nanomed. 15, 1929 (2020).

    Google Scholar 

  33. W. Zhou, K. Yin, C. Wang, Y. Zhang, T. Xu, A. Borisevich, L. Sun, J.C. Idrobo, M.F. Chisholm, S.T. Pantelides, R.F. Klie, A.R. Lupini, Nature 528, E1 (2015).

    Google Scholar 

  34. D. Shin, J.B. Park, Y.-J. Kim, S.J. Kim, J.H. Kang, B. Lee, S.-P. Cho, B.H. Hong, K.S. Novoselov, Nat. Commun. 6, 6068 (2015).

    Google Scholar 

  35. J. Yang, S.B. Alam, L. Yu, E. Chan, H. Zheng, Micron 116, 22 (2019).

    Google Scholar 

  36. P. Rez, T. Aoki, K. March, D. Gur, O.L. Krivanek, N. Dellby, T.C. Lovejoy, S.G. Wolf, H. Cohen, Nat. Commun. 7, 10945 (2016).

    Google Scholar 

  37. P.A. Crozier, Ultramicroscopy 180, 104 (2017).

    Google Scholar 

  38. J.A. Hachtel, A.R. Lupini, J.C. Idrobo, Sci. Rep. 8, 5637 (2018).

    Google Scholar 

  39. R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd ed. (Springer Science and Business Media, New York, 2011).

    Google Scholar 

  40. O.L. Krivanek, N. Dellby, J.A. Hachtel, J.C. Idrobo, M.T. Hotz, B. Plotkin-Swing, N.J. Bacon, A.L. Bleloch, G.J. Corbin, M.V. Hoffman, C.E. Meyer, T.C. Lovejoy, Ultramicroscopy 203, 60 (2019).

    Google Scholar 

  41. O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J.T. Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton, P.A. Crozier, Nature 514, 209 (2014).

    Google Scholar 

  42. P.A. Crozier, T. Aoki, Q. Liu, Ultramicroscopy 169, 30 (2016).

    Google Scholar 

  43. D.M. Haiber, P.A. Crozier, ACS Nano 12, 5463 (2018).

    Google Scholar 

  44. J.A. Hachtel, J. Huang, I. Popovs, S. Jansone-Popova, J.K. Keum, J. Jakowski, T.C. Lovejoy, N. Dellby, O.L. Krivanek, J.C. Idrobo, Science 363, 525 (2019).

    Google Scholar 

  45. J.A. Hachtel, A.R. Lupini, J.C. Idrobo, Sci. Rep. 8, 5637 (2018).

    Google Scholar 

  46. M. Battaglia, D. Contarato, P. Denes, D. Doering, P. Giubilato, T.S. Kim, S. Mattiazzo, V. Radmilovic, S. Zalusky, Nucl. Instrum. Methods Phys. Res. A 598, 642 (2009).

    Google Scholar 

  47. P. Grob, D. Bean, D. Typke, X. Li, E. Nogales, R.M. Glaeser, Ultramicroscopy 133, 1 (2013).

    Google Scholar 

  48. M. Battaglia, D. Contarato, P. Denes, P. Giubilato, Nucl. Instrum. Methods Phys. Res. A 608, 363 (2009).

    Google Scholar 

  49. E. Nogales, Nat. Methods 13, 24 (2016).

    Google Scholar 

  50. X. Li, P. Mooney, S. Zheng, C.R. Booth, M.B. Braunfeld, S. Gubbens, D.A. Agard, Y. Cheng, Nat. Methods 10, 584 (2013).

    Google Scholar 

  51. C. Ophus, Microsc. Microanal. 25, 563 (2019).

    Google Scholar 

  52. M.J. Zachman, Z. Tu, S. Choudhury, L.A. Archer, L.F. Kourkoutis, Nature 560, 345 (2018).

    Google Scholar 

  53. H. Zheng, R.K. Smith, Y.-w. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos , Science 324, 1309 (2009).

    Google Scholar 

  54. Y. Xie, S. Sohn, M. Wang, H. Xin, Y. Jung, M.D. Shattuck, C.S. O'Hern, J. Schroers, J.J. Cha, Nat. Commun. 10, 915 (2019).

    Google Scholar 

  55. J. Ciston, I.J. Johnson, B.R. Draney, P. Ercius, E. Fong, A. Goldschmidt, J.M. Joseph, J.R. Lee, A. Mueller, C. Ophus, A. Selvarajan, D.E. Skinner, T. Stezelberger, C.S. Tindall, A.M. Minor, P. Denes, Microsc. Microanal. 25, 1930 (2019).

    Google Scholar 

  56. R.F. Egerton, Micron 119, 72 (2019).

    Google Scholar 

  57. N. de Jonge, F.M. Ross, Nat. Nanotechnol. 6, 695 (2011).

    Google Scholar 

  58. N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).

  59. H. Cho, M.R. Jones, S.C. Nguyen, M.R. Hauwiller, A. Zettl, A.P. Alivisatos, Nano Lett. 17, 414 (2017).

    Google Scholar 

  60. S. Keskin, N. de Jonge, Nano Lett. 18, 7435 (2018).

    Google Scholar 

  61. Q. Chen, J.M. Smith, H.I. Rasool, A. Zettl, A.P. Alivisatos, Faraday Discuss. 175, 203 (2014).

    Google Scholar 

  62. J. Park, H. Park, P. Ercius, A.F. Pegoraro, C. Xu, J.W. Kim, S.H. Han, D.A. Weitz, Nano Lett. 15, 4737 (2015).

    Google Scholar 

  63. R.F. Egerton, Ultramicroscopy 180, 115 (2017).

    Google Scholar 

  64. F.S. Hage, D.M. Kepaptsoglou, Q.M. Ramasse, L.J. Allen, Phys. Rev. Lett. 122, 016103 (2019).

    Google Scholar 

  65. K. Venkatraman, B.D.A. Levin, K. March, P. Rez, P.A. Crozier, Nat. Phys. 15, 1237 (2019).

    Google Scholar 

  66. F.S. Hage, G. Radtke, D.M. Kepaptsoglou, M. Lazzeri, Q.M. Ramasse, Science 367, 1124 (2020).

    Google Scholar 

  67. P.J. Gomes, A.M. Ferraria, A.M. Botelho do Rego, S.V. Hoffmann, P.A. Ribeiro, M. Raposo, J. Phys. Chem. B 119, 5404 (2015).

    Google Scholar 

  68. P. Rez, T. Aoki, K. March, D. Gur, O.L. Krivanek, N. Dellby, T.C. Lovejoy, S.G. Wolf, H. Cohen, Nat. Commun. 7, 10945 (2016).

    Google Scholar 

  69. F.M. Ross, Liquid Cell Electron Microscopy (Cambridge University Press, Cambridge, UK, 2016).

    Google Scholar 

  70. J.R. Dwyer, M. Harb, Appl. Spectrosc. 71, 2051 (2017).

    Google Scholar 

  71. P. Walde, S. Ichikawa, Biomol. Eng 18, 143 (2001).

    Google Scholar 

  72. D.T. Chiu, C.F. Wilson, F. Ryttsen, A. Stromberg, C. Farre, A. Karlsson, S. Nordholm, A. Gaggar, B.P. Modi, A. Moscho, R.A. Garza-Lopez, O. Orwar, R.N. Zare, Science 283, 1892 (1999).

    Google Scholar 

  73. S.M. Hoppe, D.Y. Sasaki, A.N. Kinghorn, K. Hattar, Langmuir 29, 9958 (2013).

    Google Scholar 

  74. J. Yang, M.K. Choi, Y. Sheng, J. Jung, K. Bustillo, T. Chen, S.-W. Lee, P. Ercius, J.H. Kim, J.H. Warner, E.M. Chan, H. Zheng, Nano Lett. 19, 1788 (2019).

    Google Scholar 

  75. J. Lindner, P. Vöhringer, M.S. Pshenichnikov, D. Cringus, D.A. Wiersma, M. Mostovoy, Chem. Phys. Lett. 421, 329 (2006).

    Google Scholar 

  76. H. Nagae, M. Kuki, J.-P. Zhang, T. Sashima, Y. Mukai, Y. Koyama, J. Phys. Chem. A 104, 4155 (2000).

    Google Scholar 

  77. P.R. Tulip, S.J. Clark, Phys. Rev. B 71, 195117 (2005).

    Google Scholar 

  78. H. Terrones, E.D. Corro, S. Feng, J.M. Poumirol, D. Rhodes, D. Smirnov, N.R. Pradhan, Z. Lin, M.A.T. Nguyen, A.L. Elías, T.E. Mallouk, L. Balicas, M.A. Pimenta, M. Terrones, Sci. Rep. 4, 4215 (2014).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank J.R. Jokisaari for his help with Figure 2. P.E. is supported by the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy (DOE) under Contract No. DE-AC02–05CH11231. P.E. thanks support from the DOE Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02–05-CH11231 within the KC22ZH program. R.F.K. is supported in part by the Joint Center for Energy Storage Research (JCESR), an energy innovation hub funded by the US DOE, Office of Science, Basic Energy Sciences. J.A.H.’s portion of this work was supported by the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Authors

Appendix

Appendix

Peter Ercius is a staff scientist at the National Center for Electron Microscopy (NCEM) facility within the Molecular Foundry Division at Lawrence Berkeley National Laboratory. He is the main staff contact for the TEAM 0.5 aberration-corrected instrument. He received his BS degree in 2003, and his PhD degree in 2009 in applied and engineering physics from Cornell University. He completed postdoctoral research at the NCEM before being hired as a staff scientist. His research focuses on atomic-resolution electron tomography, scanning nanodiffraction (4D-scanning transmission electron microscopy), in situ liquid cell electron microscopy, and 2D/3D image analysis. Ercius can be reached by email at percius@lbl.gov.

Jordan Hachtel has been a staff scientist at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory (ORNL) since 2019. He received his PhD degree in physics from Vanderbilt University in 2016. He completed postdoctoral research at ORNL. His research focuses on ultrahigh-energy resolution monochromated electron energy-loss spectroscopy analysis of infrared phonons, plasmons, polaritons, and molecular vibrations in a high-spatial resolution aberration-corrected scanning transmission electron microscopy. Hachtel can be reached by email at hachtelja@ornl.gov.

Robert F. Klie is a professor of physics at the University of Illinois at Chicago (UIC). He received his PhD degree from UIC in 2002. Between 2002–2005, he was a Goldhaber Fellow at Brookhaven National Laboratory. His research includes in situ characterization of materials using aberration-corrected scanning transmission electron microscopy and electron spectroscopies. His current research focuses on novel approaches of electron energy-loss spectroscopy (EELS) to study materials, including nanoscale thermometry using low-loss EELS, or two-dimensional layer liquid cell to characterize water, biological systems, and solid–liquid interfaces. Klie can be reached by email at rfklie@uic.edu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercius, P., Hachtel, J.A. & Klie, R.F. Chemical and bonding analysis of liquids using liquid cell electron microscopy. MRS Bulletin 45, 761–768 (2020). https://doi.org/10.1557/mrs.2020.230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.230

Navigation