Skip to main content

Advertisement

Log in

Recent advances in rational design of efficient electrocatalyst for full water splitting across all pH conditions

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The electrochemical reaction that involves the splitting of water into hydrogen and oxygen gas is the superior technique for sustainable energy conversion and storage without the environmentally damaging effects of fossil fuels. To date, a large number of electrocatalysts have been used for electrochemical water splitting (EWS). Nowadays, the quest for a universal pH stable bifunctional electrocatalyst that can efficiently enhance the hydrogen and oxygen evolution reactions (HERs and OERs) is gaining significant interest in the research community. This approach avoids the divergence in the pH of the electrolyte for OER and HER activity and effectively reduces the difficulty and system cost in practical EWS. This article highlights engineering strategies and challenges in designing prospective universal pH-stable electrocatalysts with feasible OER and HER pathways for full water splitting over a wide pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C. Jiao, M. Hassan, X. Bo, M. Zhou, J. Alloys Compd. 764, 88 (2018).

    Google Scholar 

  2. J. Zeng, J. Liu, S.S. Siwal, W. Yang, X. Fu, Q. Zhang, Appl. Surf. Sci. 491, 570 (2019).

    Google Scholar 

  3. Y. Yu, Y. Shi, B. Zhang, Acc. Chem. Res. 51, 1711 (2018).

    Google Scholar 

  4. C.H. Choi, K. Chung, T.-T.H. Nguyen, D.H. Kim, ACS Energy Lett. 3, 1415 (2018).

    Google Scholar 

  5. T.Y. Ma, S. Dai, S.Z. Qiao, Mater. Today 19, 265 (2016).

    Google Scholar 

  6. L. Chen, X. Dong, Y. Wang, Y. Xia, Nat. Commun. 7, 11741 (2016).

    Google Scholar 

  7. N.K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanoscale 9, 12231 (2017).

    Google Scholar 

  8. P. Liao, J.A. Keith, E.A. Carter, J. Am. Chem. Soc. 134, 13296 (2012).

    Google Scholar 

  9. C. Xiang, K.M. Papadantonakis, N.S. Lewis, Mater. Horiz. 3, 169 (2016).

    Google Scholar 

  10. H. Han, Y.-R. Hong, J. Woo, S. Mhin, K.M. Kim, J. Kwon, H. Choi, Y.-C. Chung, T. Song, Adv. Energy Mater. 9, 1803799 (2019).

    Google Scholar 

  11. H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2, 724 (2010).

    Google Scholar 

  12. B.E. Conway, B.V. Tilak, Electrochim. Acta 47, 3571 (2002).

    Google Scholar 

  13. S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 39, 163 (1972).

    Google Scholar 

  14. F. Lai, J. Feng, X. Ye, W. Zong, G. He, Y.-E. Miao, X. Han, X.Y. Ling, I.P. Parkin, B. Pan, Y. Sun, T. Liu, J. Mater. Chem. A 7, 827 (2019).

    Google Scholar 

  15. S. Siracusano, N. Van Dijk, R. Backhouse, L. Merlo, V. Baglio, A.S. Aricò, Renew. Energy 123, 52 (2018).

    Google Scholar 

  16. R. Wu, B. Xiao, Q. Gao, Y.-R. Zheng, X.-S. Zheng, J.-F. Zhu, M.-R. Gao, S.-H. Yu, Angew. Chem. 130, 15671 (2018).

    Google Scholar 

  17. X.Y. Zhang, H. Yuan, F. Mao, C.F. Wen, L.R. Zheng, P.F. Liu, H.G. Yang, ChemSusChem 12, 5063 (2019).

    Google Scholar 

  18. S. Anantharaj, K. Karthik, T.S. Amarnath, S. Chatterjee, E. Subhashini, K.C. Swaathini, P.E. Karthick, S. Kundu, Appl. Surf. Sci. 478, 784 (2019).

    Google Scholar 

  19. L. Chen, X. Dong, F. Wang, Y. Wang, Y. Xia, Chem. Commun. 52, 3147 (2016).

    Google Scholar 

  20. Z. Zhuang, Y. Wang, C.-Q. Xu, S. Liu, C. Chen, Q. Peng, Z. Zhuang, H. Xiao, Y. Pan, S. Lu, R. Yu, W.-C. Cheong, X. Cao, K. Wu, K. Sun, Y. Wang, D. Wang, J. Li, Y. Li, Nat. Commun. 10, 4875 (2019).

    Google Scholar 

  21. Y. Zhao, J. Bai, X.-R. Wu, P. Chen, P.-J. Jin, H.-C. Yao, Y. Chen, J. Mater. Chem. A 7, 16437 (2019).

    Google Scholar 

  22. Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, M.G. Kanatzidis, J. Am. Chem. Soc. 141, 10417 (2019).

    Google Scholar 

  23. W. Cheng, H. Zhang, X. Zhao, H. Su, F. Tang, J. Tian, Q. Liu, J. Mater. Chem. A 6, 9420 (2018).

    Google Scholar 

  24. Z. Liu, H. Tan, D. Liu, X. Liu, J. Xin, J. Xie, M. Zhao, L. Song, L. Dai, H. Liu, Adv. Sci. 6, 1801829 (2019).

    Google Scholar 

  25. H. Liu, X. Peng, X. Liu, G. Qi, J. Luo, ChemSusChem 12, 1334 (2019).

    Google Scholar 

  26. L. Wang, X. Duan, X. Liu, J. Gu, R. Si, Y. Qiu, Y. Qiu, D. Shi, F. Chen, X. Sun, J. Lin, J. Sun, Adv. Energy Mater. 10, 1903137 (2020).

    Google Scholar 

  27. C. Ray, S.C. Lee, K.V. Sankar, B. Jin, J. Lee, J.H. Park, S.C. Jun, ACS Appl. Mater. Interfaces 9, 37739 (2017).

    Google Scholar 

  28. J. Wang, Y. Ji, R. Yin, Y. Li, Q. Shao, X. Huang, J. Mater. Chem. A 7, 6411 (2019).

    Google Scholar 

  29. J. Yang, Q. Shao, B. Huang, M. Sun, X. Huang, iScience 11, 492 (2019).

    Google Scholar 

  30. Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao, X. Huang, Angew. Chem. Int. Ed. Engl. 58, 13983 (2019).

    Google Scholar 

  31. J. Lai, S. Li, F. Wu, M. Saqib, R. Luque, G. Xu, Energy Environ. Sci. 9, 1210 (2016).

    Google Scholar 

  32. L. Najafi, S. Bellani, R. Oropesa-Nuñez, M. Prato, B. Martín-García, R. Brescia, F. Bonaccorso, ACS Nano 13, 3162 (2019).

    Google Scholar 

  33. C. Xing, Y. Xue, B. Huang, H. Yu, L. Hui, Y. Fang, Y. Liu, Y. Zhao, Z. Li, Y. Li, Angew. Chem. 131, 14035 (2019).

    Google Scholar 

  34. C. Guan, H. Wu, W. Ren, C. Yang, X. Liu, X. Ouyang, Z. Song, Y. Zhang, S.J. Pennycook, C. Cheng, J. Wang, J. Mater. Chem. A 6, 9009 (2018).

    Google Scholar 

  35. T. Zheng, C. Shang, Z. He, X. Wang, C. Cao, H. Li, R. Si, B. Pan, S. Zhou, J. Zeng, Angew. Chem. 131, 14906 (2019).

    Google Scholar 

  36. X. Wu, B. Feng, W. Li, Y. Niu, Y. Yu, S. Lu, C. Zhong, P. Liu, Z. Tian, L. Chen, W. Hu, C.M. Li, Nano Energy 62, 117 (2019).

    Google Scholar 

  37. L. Fu, X. Hu, Y. Li, G. Cheng, W. Luo, Nanoscale 11, 8898 (2019).

    Google Scholar 

  38. Y. Sim, S.J. Kim, G. Janani, Y. Chae, S. Surendran, H. Kim, S. Yoo, D.C. Seok, Y.H. Jung, C. Jeon, J. Moon, U. Sim, Appl. Surf. Sci. 507, 145157 (2020).

    Google Scholar 

  39. S. Surendran, S. Shanmugapriya, H. Ramasamy, G. Janani, D. Kalpana, Y.S. Lee, U. Sim, R.K. Selvan, Appl. Surf. Sci. 494, 916 (2019).

    Google Scholar 

  40. S. Surendran, S. Shanmugapriya, Y.S. Lee, U. Sim, R.K. Selvan, ChemistrySelect 3, 12303 (2018).

    Google Scholar 

  41. W. Kreuter, H. Hofmann, Int. J. Hydrogen Energy 23, 661 (1998).

    Google Scholar 

  42. D.M.F. Santos, C.A.C. Sequeira, J.L. Figueiredo, Quim. Nova 36, 1176 (2013).

    Google Scholar 

  43. W. Sheng, H.A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157, B1529–B1536 (2010).

    Google Scholar 

  44. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Chem. Soc. Rev. 46, 337 (2017).

    Google Scholar 

  45. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, J. Am. Chem. Soc. 135, 8452 (2013).

    Google Scholar 

  46. P. Wang, M. Yan, J. Meng, G. Jiang, L. Qu, X. Pan, J.Z. Liu, L. Ma, Nat. Commun. 8, 1 (2017).

    Google Scholar 

  47. K. Asha, A. Banerjee, S. Saxena, S.A. Khan, I. Sulaniya, V.R. Satsangi, R. Shrivastav, R. Kant, S. Dass, J. Power Sources 432, 38 (2019).

    Google Scholar 

  48. H. Duan, D. Li, Y. Tang, Y. He, S. Ji, R. Wang, H. Lv, P.P. Lopes, A.P. Paulikas, H. Li, J. Am. Chem. Soc. 139, 5494 (2017).

    Google Scholar 

  49. J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, Adv. Mater. 29, 1703798 (2017).

    Google Scholar 

  50. P. Wang, K. Jiang, G. Wang, J. Yao, X. Huang, Angew. Chem. Int. Ed. Engl. 55, 12859 (2016).

    Google Scholar 

  51. J. Joo, H. Jin, A. Oh, B. Kim, J. Lee, H. Baik, S.H. Joo, K. Lee, J. Mater. Chem. A 6, 16130 (2018).

    Google Scholar 

  52. T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, H.N. Nong, R. Schlög, J. Am. Chem. Soc. 137, 13031 (2015).

    Google Scholar 

  53. H. Jin, Y. Hong, J. Yoon, A. Oh, N.K. Chaudhari, H. Baik, S.H. Joo, K. Lee, Nano Energy 42, 17 (2017).

    Google Scholar 

  54. B. Liu, L. Zhang, W. Xiong, M. Ma, Angew. Chem. Int. Ed. Engl. 55, 6725 (2016).

    Google Scholar 

  55. K. Xu, H. Cheng, L. Liu, H. Lv, X. Wu, C. Wu, Y. Xie, Nano Lett. 17, 578 (2017).

    Google Scholar 

  56. X. Zou, Y. Zhang, J. Chem. Soc. Rev. 44, 5148 (2015).

    Google Scholar 

  57. J. Zhang, G. Wang, Z. Liao, P. Zhang, F. Wang, X. Zhuang, E. Zschech, X. Feng, Nano Energy 40, 27 (2017).

    Google Scholar 

  58. M. Hambourger, M. Gervaldo, D. Svedruzic, P.W. King, D. Gust, M. Ghirardi, A.L. Moore, T.A. Moore, J. Am. Chem. Soc. 130, 2015 (2008).

    Google Scholar 

  59. A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science 326, 1384 (2009).

    Google Scholar 

  60. A. Kundu, J.N. Sahu, G. Redzwan, M.A. Hashim, Int. J. Hydrogen Energy 38, 1745 (2013).

    Google Scholar 

  61. S. Kumari, B.P. Ajayi, B. Kumar, J.B. Jasinski, M.K. Sunkara, J.M. Spurgeon, Energy Environ. Sci. 10, 2432 (2017).

    Google Scholar 

  62. Q. Shi, C. Zhu, H. Zhong, D. Su, N. Li, M.H. Engelhard, H. Xia, Q. Zhang, S. Feng, S.P. Beckman, ACS Energy Lett. 3, 2038 (2018).

    Google Scholar 

  63. F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang, J. Zhou, C. Yang, M. Luo, Y. Yang, Y. Li, P. Gao, S. Guo, ACS Cent. Sci. 4, 1244 (2018).

    Google Scholar 

  64. J. Li, Z. Xia, X. Zhou, Y. Qin, Y. Ma, Y. Qu, Nano Res. 10, 814 (2017).

    Google Scholar 

  65. Z.-H. Xue, H. Su, Q.-Y. Yu, B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen, Adv. Energy Mater. 7, 1602355 (2017).

    Google Scholar 

  66. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110, 6474 (2010).

    Google Scholar 

  67. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Electrochim. Acta. 82, 384 (2012).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge this work supported by the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT & Future Planning, Republic of Korea (2018R1C1B6001267) and the Human Resources Development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade (20194030202470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gnanaprakasam Janani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janani, G., Choi, H., Surendran, S. et al. Recent advances in rational design of efficient electrocatalyst for full water splitting across all pH conditions. MRS Bulletin 45, 539–547 (2020). https://doi.org/10.1557/mrs.2020.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.166

Navigation