Skip to main content

Advertisement

Log in

Pyrite-type electrocatalysts for hydrogen evolution

  • Nanomaterials for Electrochemical Water Splitting
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Electrochemical water splitting is one of the promising energy-conversion technologies to utilize intermittent renewable energy and produce hydrogen for clean energy. Pyrite-type transition-metal dichalcogenides have great potential to be applied for energy conversion. This article reviews recent progress in the performance of pyrite-type nanomaterials on the hydrogen evolution reaction, including an overview of crystal and electronic structure of pyrites and the principles of improving electrocatalytic activity and stability for S-based, Se-based, ternary, and other pyrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.O’M. Bockris, Int. J. Hydrogen Energy 27, 731 (2002).

    Google Scholar 

  2. J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29, 1605838 (2017).

    Google Scholar 

  3. C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137, 4347 (2015).

    Google Scholar 

  4. S. Shima, O. Pilak, S. Vogt, M. Schick, M.S. Stagni, W. Meyer-Klaucke, E. Warkentin, R.K. Thauer, U. Ermler, Science 321, 572 (2008).

    Google Scholar 

  5. M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Acc. Chem. Res. 50, 2194 (2017).

    Google Scholar 

  6. M.S. Faber, K. Park, M. Cabán-Acevedo, P.K. Santra, S. Jin, J. Phys. Chem. Lett. 4, 1843 (2013).

    Google Scholar 

  7. J.R. Craig, F.M. Vokes, T.N. Solberg, Miner. Deposita 34, 82 (1998).

    Google Scholar 

  8. R. Wu, Y.F. Zheng, X.G. Zhang, Y.F. Sun, J.B. Xu, J.K. Jian, J. Cryst. Growth 266, 523 (2004).

    Google Scholar 

  9. M. Cabán-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Nat. Mater. 14, 1245 (2015).

    Google Scholar 

  10. D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, Energy Environ. Sci. 6, 3553 (2013).

    Google Scholar 

  11. S. Ogawa, J. Appl. Phys. 50, 2308 (1979).

    Google Scholar 

  12. M.R. Gao, J. Jiang, S.H. Yu, Small 8, 13 (2012).

    Google Scholar 

  13. P. Chen, T. Zhou, M. Chen, Y. Tong, N. Zhang, X. Peng, W. Chu, X. Wu, C. Wu, Y. Xie, ACS Catal. 7, 7405 (2017).

    Google Scholar 

  14. H. Liu, Q. He, H. Jiang, Y. Lin, Y. Zhang, M. Habib, S. Chen, L. Song, ACS Nano 11, 11574 (2017).

    Google Scholar 

  15. D.Y. Wang, M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y. Wu, M.C. Lin, M. Guan, J. Yang, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, H. Dai, J. Am. Chem. Soc. 137, 1587 (2015).

    Google Scholar 

  16. T.R. Kuo, W.T. Chen, H.J. Liao, Y.H. Yang, H.C. Yen, T.W. Liao, C.Y. Wen, Y.C. Lee, C.C. Chen, D.Y. Wang, Small 13, 1603356 (2017).

    Google Scholar 

  17. N.Q. Tran, V.Q. Bui, H.M. Le, Y. Kawazoe, H. Lee, Adv. Energy Mater. 8, 1702139 (2018).

    Google Scholar 

  18. Y. Chen, S. Xu, Y. Li, R.J. Jacob, Y. Kuang, B. Liu, Y. Wang, G. Pastel, L.G. Salamanca-Riba, M.R. Zachariah, L. Hu, Adv. Energy Mater. 7, 1700482 (2017).

    Google Scholar 

  19. P. Kuang, T. Tong, K. Fan, J. Yu, ACS Catal. 7,7 6179 (2017).

    Google Scholar 

  20. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Adv. Energy Mater. 8, 1800935 (2018).

    Google Scholar 

  21. M.S. Faber, R. Dziedzic, M.A. Lukowski, N.S. Kaiser, Q. Ding, S. Jin, J. Am. Chem. Soc. 136, 10053 (2014).

    Google Scholar 

  22. J. Li, Z. Xia, M. Zhang, S. Zhang, J. Li, Y. Ma, Y. Qu, J. Mater. Chem. A 7, 17775 (2019).

    Google Scholar 

  23. D. Kong, H. Wang, Z. Lu, Y. Cui, J. Am. Chem. Soc. 136, 4897 (2014).

    Google Scholar 

  24. F. Wang, Y. Li, T.A. Shifa, K. Liu, F. Wang, Z. Wang, P. Xu, Q. Wang, J. He, Angew. Chem. Int. Ed. 55, 6919 (2016).

    Google Scholar 

  25. H. Zhou, Y. Wang, R. He, F. Yu, J. Sun, F. Wang, Y. Lan, Z. Ren, S. Chen, Nano Energy 20, 29 (2016).

    Google Scholar 

  26. B. Wang, Z. Wang, X. Wang, B. Zheng, W. Zhang, Y. Chen, J. Mater. Chem. A 6, 12701 (2018).

    Google Scholar 

  27. H. Li, S. Chen, H. Lin, X. Xu, H. Yang, L. Song, X. Wang, Small 13, 1701487 (2017).

    Google Scholar 

  28. Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan, Y. Xie, J. Am. Chem. Soc. 138, 5087 (2016).

    Google Scholar 

  29. Y. Li, T. Polakovic, J. Curtis, S.L. Shumlas, S. Chatterjee, S. Intikhab, D.A. Chareev, O.S. Volkova, A.N. Vasiliev, G. Karapetrov, J. Snyder, J. Catal. 366, 50 (2018).

    Google Scholar 

  30. Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, Adv. Energy Mater. 5, 1402031 (2015).

    Google Scholar 

  31. B. Dutta, Y. Wu, J. Chen, J. Wang, J. He, M. Sharafeldin, P. Kerns, L. Jin, A.M. Dongare, J. Rusling, S.L. Suib, ACS Catal. 9, 456 (2019).

    Google Scholar 

  32. P. Jiang, Q. Liu, X. Sun, Nanoscale 6, 13440 (2014).

    Google Scholar 

  33. K. Liu, F. Wang, P. He, T.A. Shifa, Z. Wang, Z. Cheng, X. Zhan, J. He, Adv. Energy Mater. 8, 1703290 (2018).

    Google Scholar 

  34. J. Li, Z. Xia, X. Zhou, Y. Qin, Y. Ma, Y. Qu, Nano Res. 10, 814 (2017).

    Google Scholar 

  35. W. Liu, E. Hu, H. Jiang, Y. Xiang, Z. Weng, M. Li, Q. Fan, X. Yu, E.I. Altman, H. Wang, Nat. Commun. 7, 10771 (2016).

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (21872109, 61774109). This work was also supported by the Hundred Talents Program of Shanxi Province, the Youth “Sanjin” Scholar Program and the Key R&D Project of Shanxi Province (International Cooperation Program, 201603D421032), and the Natural Science Foundation of Shanxi Province (201801D211007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyan Gou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, W., Zhang, M., Wu, J. et al. Pyrite-type electrocatalysts for hydrogen evolution. MRS Bulletin 45, 555–561 (2020). https://doi.org/10.1557/mrs.2020.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.165

Navigation