Skip to main content
Log in

Defects in halide perovskites: The lattice as a boojum?

  • Halide Perovskite Opto- and Nanoelectronic Materials and Devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Although halide perovskites (HaPs) are synthesized in ways that appear antithetical to those required for yielding high-quality semiconductors, the properties of the resulting materials imply, particularly for single crystals, ultralow densities of optoelectronically active defects. This article provides different views of this unusual behavior. We pose the question: Can present models of point defects in solids be used to interpret the experimental data and provide predictive power? The question arises because the measured ultralow densities refer to static defects using our present methods and models, while dynamic defect densities are ultrahigh, a result of the material being relatively soft, with a shallow electrostatic energy landscape, and with anharmonic lattice dynamics. All of these factors make the effects of dynamic defects on the materials’ optoelectronic properties minimal. We hope this article will stimulate discussions on the nontrivial question: Are HaPs, and especially the defects within them, business as usual?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1 (1), 1 (2016).

    Google Scholar 

  2. R. Babu, L. Giribabu, S.P. Singh, Cryst. Growth Des. 18 (4), 2645 (2018).

    Google Scholar 

  3. A.L. Abdelhady, M.I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sintara, E.H. Sargent, O.F. Mohammed, O.M. Bakr, J. Phys. Chem. Lett. 7 (2), 295 (2016).

    Google Scholar 

  4. P.K. Nayak, M. Sendner, B. Wenger, Z. Wang, K. Sharma, A.J. Ramadan, R. Lovrinčić, A. Pucci, P.K. Madhu, H.J. Snaith, J. Am. Chem. Soc. 140 (2), 574 (2018).

    Google Scholar 

  5. S. Lany, A. Zunger, Phys. Rev. B 78, 235104 (2008).

    Google Scholar 

  6. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, Rev. Mod. Phys. 86, 253 (2014).

    Google Scholar 

  7. L. Qiu, S. He, L.K. Ono, Y. Qi, Adv. Energy Mater. 10, 1902726 (2020).

    Google Scholar 

  8. C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Chem. Soc. Rev. 47 (12), 4581 (2018).

    Google Scholar 

  9. L.K. Ono, S. Liu, Y. Qi, Angew. Chem. Int. Ed. Engl. 59, 6676 (2020).

    Google Scholar 

  10. S.G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A.J. Barker, F.D. Angelis, A. Petrozza, Adv. Mater. 31, 1901183 (2019).

    Google Scholar 

  11. H. Jin, E. Debrove, M. Keshavarz, I.G. Scheblykin, M.B.J. Roeffaers, J. Hofkens, J.A. Steele, Mater. Horiz. 7, 397 (2020).

    Google Scholar 

  12. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971).

    Google Scholar 

  13. H.J. Queisser, E.E. Haller, Science 281 (5379), 945 (1998).

    Google Scholar 

  14. S.D. Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, J. Phys. Chem. Lett. 5 (6), 1035 (2014).

    Google Scholar 

  15. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342 (6156), 341 (2013).

    Google Scholar 

  16. M. Yang, Y. Zhou, Y. Zeng, C.S. Jiang, N.P. Padture, K. Zhu, Adv. Mater. 27 (41), 6363 (2015).

    Google Scholar 

  17. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.Y. Zhu, Nat. Mater. 14 (6), 636 (2015).

    Google Scholar 

  18. T. Shi, W.J. Yin, F. Hong, K. Zhu, Y. Yan, Appl. Phys. Lett 106 (10), 103902 (2015).

    Google Scholar 

  19. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, 2015).

    Google Scholar 

  20. M.I. Saidiminov, M.A. Haque, J. Almutlaq, S. Sarmah, X.H. Miao, R. Begum, I. Dursun, N. Cho, B. Murali, O.F. Mohammed, T. Wu, O.M. Bakr, Adv. Opt. Mater. 5, 1600704 (2017).

    Google Scholar 

  21. Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen, C.C. Stoumpos, Z. Liu, J.A. Peters, D.Y. Chung, B.W. Wessels, M.R. Wasielewski, V.P. Dravid, A. Burger, M.G. Kanatzidis, Nat. Commun. 9, 1609 (2018).

    Google Scholar 

  22. S.R. Williams, L.W. Barr, J. Phys. Colloq. 34, C9–173 (1973).

    Google Scholar 

  23. D.R. Ceratti, Y. Rakita, L. Cremonesi, R. Tenne, V. Kalchenko, M. Elbaum, D. Oron, M.A.C. Potenza, G. Hodes, D. Cahen, Adv. Mater. 30 (10) 1706273 (2018).

    Google Scholar 

  24. J. Kim, A.H. Baillie, S. Huang, Solar RRL 3, 1800302 (2019).

    Google Scholar 

  25. J. Yang, S. Chen, J. Xu, Q. Zhang, H. Liu, Z. Liu, M. Yuan, Appl. Sci. 9, 4393 (2019).

    Google Scholar 

  26. B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 48, 3842 (2019).

    Google Scholar 

  27. F. Wang, S. Bai, W. Tress, A. Hagfeldt, Feng Gao, NPJ Flex. Electron. 2 (1), 1 (2018).

    Google Scholar 

  28. Y. Rakita, I. Lubomirsky, D. Cahen, Mater. Horiz. 6 (7), 1297 (2019).

    Google Scholar 

  29. D.R. Ceratti, Y. Rakita, R. Tenne, I. Goldia, L. Cremonesi, V. Kalchenko, M. Elbaum, D. Oron, M.A.C. Potenza, G. Hodes, D. Cahen (forthcoming).

  30. J. Berry, T. Buonassisi, D.A. Egger, G. Hodes, L. Kronik, Y.-L. Loo, I. Lubomirsky, S.R. Marder, Y. Mastai, J.S. Miller, D.B. Mitzi, Y. Paz, A.M. Rappe, I. Riess, B. Rybtchinski, O.M. Stafsudd, V. Stevanovic, M.F Toney, D. Zitoun, A. Kahn, D.S. Ginley, D. Cahen, Adv. Mater 27, 5102 (2015).

    Google Scholar 

  31. A. Zakutayev, C.M. Caskey, A.N. Fioretti, D.S. Ginley, J. Vidal, V. Stevanovic, E. Tea, S. Lany, J. Phys. Chem. Lett. 5 (7), 1117 (2014).

    Google Scholar 

  32. R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, MRS Commun. 5 (2), 265 (2015).

    Google Scholar 

  33. J. Schoonman, J. Solid State Chem. 5 (1), 62 (1972).

    Google Scholar 

  34. A.V. Cohen, D.A. Egger, A.M. Rappe, L. Kronik, J. Phys. Chem. Lett. 10 (16), 4490 (2019).

    Google Scholar 

  35. Y. Rakita, S.R. Cohen, N.K. Kedem, G. Hodes, D. Cahen, MRS Comm. 5 (4), 623 (2015).

    Google Scholar 

  36. S. Sun, Y. Fang, G. Kieslich, T.J. White, A.K. Cheetham, J. Mater. Chem. A 3, 18450 (2015).

    Google Scholar 

  37. H.J. McSkimin, A. Jayaraman, P. Andreatch Jr., J. Appl. Phys 38 (5), 2362 (1967).

    Google Scholar 

  38. A. Ciccioli, A. Latini, J. Phys. Chem. Lett. 9 (13), 3756 (2018).

    Google Scholar 

  39. Y. Rakita, T. Kirchartz, G. Hodes, D. Cahen, preprint, arXiv:1907.03971 (2019).

  40. I. Levine, O.G. Vera, M. Kulbak, D.R. Ceratti, C. Rehermann, J.A. Márquez, S. Levcenko, T. Unold, G. Hodes, I. Balberg, D. Cahen, T. Dittrich, ACS Energy Lett. 4 (5), 1150 (2019).

    Google Scholar 

  41. D. Azulay, I. Levine, S. Gupta, E.B. Kulbak, A. Bera, G. San, S. Simha, D. Cahen, O. Millo, G. Hodes, I. Balberg, Phys. Chem. Chem. Phys. 20 (37), 24444 (2018).

    Google Scholar 

  42. M. Ledinsky, T. Schönfeldová, J. Holovský, E. Aydin, Z. Hájková, L. Landová, N. Neyková, A. Fejfar, S.D. Wolf, J. Phys. Chem. Lett. 10 (6), 1368 (2019).

    Google Scholar 

  43. E.T Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Chem. Sci. 6 (1), 613 (2015).

    Google Scholar 

  44. C.M. Sutter-Fella, D.W. Miller, Q.P. Ngo, E.T. Roe, F.M. Toma, I.D. Sharp, M.C Lonergan, A. Javey, ACS Energy Lett. 2 (3), 709 (2017).

    Google Scholar 

  45. D.P McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science 351 (6269), 151 (2016).

    Google Scholar 

  46. A. Sadhanala, F. Deschler, T.H. Thomas, S.E. Dutton, K.C Goedel, F.C. Hanusch, M.L. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, R.H. Friend, J. Phys. Chem. Lett. 5 (15), 2501 (2014).

    Google Scholar 

  47. J. Jean, T.S. Mahony, D. Bozyigit, M. Sponseller, J. Holovský, M.G. Bawendi, V. Bulović, ACS Energy Lett. 2 (11), 2616 (2017).

    Google Scholar 

  48. P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Nat. Rev. Mater. 4 (4), 269 (2019).

    Google Scholar 

  49. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 13, 460 (2019).

    Google Scholar 

  50. Z. Liu, L. Krückemeier, B. Krogmeier, B. Klingebiel, J.A. Márquez, S. Levcenko, S. Öz, S. Mathur, U. Rau, T. Unold, T. Kirchartz, ACS Energy Lett. 4, 110 (2019).

    Google Scholar 

  51. S.D. Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, J. Phys. Chem. Lett. 5 (6), 1035 (2014).

    Google Scholar 

  52. D.W. Miller, G.E. Eperon, ET. Roe, C.W. Warren, H.J. Snaith, M.C. Lonergan, Appl. Phys. Lett. 109 (15), 153902 (2016).

    Google Scholar 

  53. D. Cahen, R. Noufi, Sol. Cells 30, 53 (1991).

    Google Scholar 

  54. N.D. Mermin, Phys. Today 34, 46 (1981).

  55. Lewis Carroll, The Hunting of the Snark: An Agony in Eight Fits (Macmillan, London, UK, 1876).

    Google Scholar 

Download references

Acknowledgments

S.K. thanks the Israel Council of Higher Learning for a Planning and Budgeting Committee (PBC) Fellowship in support of his postdoctoral research. S.K. and D.C. thank the Israel Science Foundation, via its program with the PRC’s National Science Foundation, (ISF-NSFC) for partial support (@Bar-Ilan University). At the Weizmann Institute of Science, this work received support from the Yotam Project, via the Sustainability and Energy Research Initiative, and the Minerva Center for Self-Repairing Systems for Energy and Sustainability. We thank Y. Rakita for discussions.

Author information

Authors and Affiliations

Authors

Additional information

A boojum is one type of Lewis Carroll’s imaginary snark that can cause “soft and sudden vanishing away” (Figure 3).55 N. David Mermin introduced the concept into the natural sciences (see Reference 54).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Hodes, G. & Cahen, D. Defects in halide perovskites: The lattice as a boojum?. MRS Bulletin 45, 478–484 (2020). https://doi.org/10.1557/mrs.2020.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2020.146

Navigation