Skip to main content

Advertisement

Log in

Architected materials for advanced electrochemical systems

  • Three-Dimensional Architected Materials and Structures
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Architected materials play an essential role in achieving next-generation electrochemical systems with unprecedented power and energy capabilities. The geometry and chemistry of architected materials can be engineered to address key areas of performance, including electrochemical kinetics and mechanics. Electrochemical kinetics impact key metrics such as power density, efficiency, and lifetime in batteries, fuel cells, and sensors. Additionally, electrochemical reactions can dramatically change material composition, which may result in large strains (in the hundreds of percent) that cause mechanical failure. In this article, we summarize advances in energy storage offered by architected materials and highlight fabrication methods used to realize these advances. We also discuss electrochemistry as an enabling tool for architected materials with functionality beyond energy storage and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J.L. Heilbron, J. Electrochem. Soc. 124, C138 (1977).

    Google Scholar 

  2. M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010).

    Google Scholar 

  3. P.V. Braun, J. Cho, J.H. Pikul, W.P. King, H. Zhang, Curr. Opin. Solid State Mater. Sci. 16, 186 (2012).

    Google Scholar 

  4. J.H. Pikul, P.V. Braun, W.P. King, J. Electrochem. Soc. 164, E3122 (2017).

    Google Scholar 

  5. Y. Sun, N. Liu, Y. Cui, Nat. Energy 1, 16071 (2016).

    Google Scholar 

  6. T.S. Arthur, D.J. Bates, N. Cirigliano, D.C. Johnson, P. Malati, J.M. Mosby, E. Perre, M.T. Rawls, A.L. Prieto, B. Dunn, MRS Bull. 36, 523 (2011).

    Google Scholar 

  7. J.W. Long, B. Dunn, D.R. Rolison, H.S. White, Chem. Rev. 104, 4463 (2004).

    Google Scholar 

  8. R. Kötz, M. Carlen, Electrochim. Acta 45, 2483 (2000).

    Google Scholar 

  9. A.F. Ghoniem, Prog. Energy Combust. Sci. 37, 15 (2011).

    Google Scholar 

  10. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Adv. Sci. 5, 1700322 (2018).

    Google Scholar 

  11. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science and Business Media, Berlin, Germany, 2013).

  12. K. Sharma, A. Arora, S. Tripathi, Energy Environ. Mater. 21, 801 (2019).

    Google Scholar 

  13. Y. Jiang, J. Liu, Energy Environ. Mater. 2, 30 (2019).

    Google Scholar 

  14. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014).

    Google Scholar 

  15. H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Nat. Rev. Mater. 4, 45 (2019).

    Google Scholar 

  16. E. Frackowiak, F. Beguin, Carbon 39, 937 (2001).

    Google Scholar 

  17. M.B. Sassin, A.N. Mansour, K.A. Pettigrew, D.R. Rolison, J.W. Long, ACS Nano 4, 4505 (2010).

    Google Scholar 

  18. E. Pomerantseva, Y. Gogotsi, Nat. Energy 2, 17089 (2017).

    Google Scholar 

  19. Y. Xia, T.S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 557, 409 (2018).

    Google Scholar 

  20. M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.-L. Taberna, M.W. Barsoum, P. Simon, Nat. Energy 2, 17105 (2017).

    Google Scholar 

  21. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7, 12647 (2016).

    Google Scholar 

  22. B. Dunn, H. Kamath, J.-M. Tarascon, Science 334, 928 (2011).

    Google Scholar 

  23. P. Sapkota, H. Kim, J. Ind. Eng. Chem. 15, 445 (2009).

    Google Scholar 

  24. Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Nat. Energy 3, 279 (2018).

    Google Scholar 

  25. Y. Li, J. Lu, ACS Energy Lett. 2, 1370 (2017).

  26. T. Gnann, S. Funke, N. Jakobsson, P. Plötz, F. Sprei, A. Bennehag, Transp. Res. D Transp. Environ. 62, 314 (2018).

    Google Scholar 

  27. D. Golodnitsky, M. Nathan, V. Yufit, E. Strauss, K. Freedman, L. Burstein, A. Gladkich, E. Peled, Solid State Ionics 177, 2811 (2006).

    Google Scholar 

  28. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 44, 5926 (2015).

    Google Scholar 

  29. M.A. Martin, C.-F. Chen, P.P. Mukherjee, S. Pannala, J.-F. Dietiker, J.A. Turner, D. Ranjan, J. Electrochem. Soc. 162, A991 (2015).

    Google Scholar 

  30. J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, Nat. Commun. 4, 1732 (2013).

    Google Scholar 

  31. C. Liu, E.I. Gillette, X. Chen, A.J. Pearse, A.C. Kozen, M.A. Schroeder, K.E. Gregorczyk, S.B. Lee, G.W. Rubloff, Nat. Nanotechnol. 9, 1031 (2014).

    Google Scholar 

  32. D.R. Rolison, B. Dunn, J. Mater. Chem. 11, 963 (2001).

    Google Scholar 

  33. H. Zhang, X. Yu, P.V. Braun, Nat. Nanotechnol. 6, 277 (2011).

    Google Scholar 

  34. J.H. Pikul, J. Liu, P.V. Braun, W.P. King, J. Power Sources 315, 308 (2016).

    Google Scholar 

  35. H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J.A. Rogers, W.P. King, P.V. Braun, Proc. Natl. Acad. Sci. U.S.A. 112, 6573 (2015).

    Google Scholar 

  36. J. Liu, H.G. Zhang, J. Wang, J. Cho, J.H. Pikul, E.S. Epstein, X. Huang, J. Liu, W.P. King, P.V. Braun, Adv. Mater. 26, 7096 (2014).

    Google Scholar 

  37. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 1, 16030 (2016).

    Google Scholar 

  38. J. Li, Z. Du, R.E. Ruther, S.J. An, L.A. David, K. Hays, M. Wood, N.D. Phillip, Y. Sheng, C. Mao, JOM 69, 1484 (2017).

    Google Scholar 

  39. J. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu, J. Wang, Adv. Mater. 28, 8732 (2016).

    Google Scholar 

  40. J. Werner, G. Rodríguez-Calero, H. Abruña, U. Wiesner, Energy Environ. Sci. 11, 1261 (2018).

    Google Scholar 

  41. C. Zhu, P. Kopold, P.A. van Aken, J. Maier, Y. Yu, Adv. Mater. 28, 2409 (2016).

    Google Scholar 

  42. J.C. Lytle, J.W. Long, C.N. Chervin, M.B. Sassin, D.R. Rolison, “3D Architectures Are Not Just for Microbatteries Anymore,” in Micro- and Nanotechnology Sensors, Systems, and Applications III (SPIE, the International Society for Optics and Photonics, Bellingham, WA, 2011), p. 80311N.

  43. N. Li, Z. Chen, W. Ren, F. Li, H.-M. Cheng, Proc. Natl. Acad. Sci. U.S.A. 109, 17360 (2012).

    Google Scholar 

  44. H. Chen, H. Xu, S. Wang, T. Huang, J. Xi, S. Cai, F. Guo, Z. Xu, W. Gao, C. Gao, Sci. Adv. 3, eaa07233 (2017).

    Google Scholar 

  45. D. Anseán, M. Dubarry, A. Devie, B. Liaw, V. García, J. Viera, M. González, J. Power Sources 321, 201 (2016).

    Google Scholar 

  46. S. Liu, J. Jiang, W. Shi, Z. Ma, L.Y. Wang, H. Guo, IEEE Trans. Ind. Electron. 62, 7557 (2015).

    Google Scholar 

  47. X. Chen, H. Zhu, Y.-C. Chen, Y. Shang, A. Cao, L. Hu, G.W. Rubloff, ACS Nano 6, 7948 (2012).

    Google Scholar 

  48. H. Zhang, P.V. Braun, Nano Lett. 12, 2778 (2012).

    Google Scholar 

  49. B. Reeja-Jayan, N. Chen, J. Lau, J.A. Kattirtzi, P. Moni, A. Liu, I.G. Miller, R. Kayser, A.P. Willard, B. Dunn, Macromolecules 48, 5222 (2015).

    Google Scholar 

  50. H. Zhang, H. Ning, J. Busbee, Z. Shen, C. Kiggins, Y. Hua, J. Eaves, J. Davis, T. Shi, Y.-T. Shao, J. Zuo, X. Hong, Y. Chan, S. Wang, P. Wang, P. Sun, S. Xu, J. Liu, P.V. Braun, Sci. Adv. 3, e1602427 (2017).

    Google Scholar 

  51. H. Zhang, T. Shi, D.J. Wetzel, R.G. Nuzzo, P.V. Braun, Adv. Mater. 28, 742 (2016).

    Google Scholar 

  52. M.J. Synodis, M. Kim, M.G. Allen, S.A.B. Allen, J. Micromech. Microeng. 29, 055006 (2019).

    Google Scholar 

  53. N. Plylahan, N.A. Kyeremateng, M. Eyraud, F. Dumur, H. Martinez, L. Santinacci, P. Knauth, T. Djenizian, Nanoscale Res. Lett. 7, 349 (2012).

    Google Scholar 

  54. J. Schnell, T. Günther, T. Knoche, C. Vieider, L. Köhler, A. Just, M. Keller, S. Passerini, G. Reinhart, J. Power Sources 382, 160 (2018).

    Google Scholar 

  55. P. Verma, P. Maire, P. Novák, Electrochim. Acta 55, 6332 (2010).

    Google Scholar 

  56. A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, D. Riu, J. Power Sources 241, 680 (2013).

    Google Scholar 

  57. The Internet of Things: A Movement, Not a Market (IHS Markit Ltd., London, UK, 2017).

  58. N.J. Dudney, Electrochem. Soc. Interface 17, 44 (2008).

    Google Scholar 

  59. W. Lai, C.K. Erdonmez, T.F. Marinis, C.K. Bjune, N.J. Dudney, F. Xu, R. Wartena, Y.-M. Chiang, Adv. Mater. 22, E139 (2010).

    Google Scholar 

  60. N. Cirigliano, G. Sun, D. Membreno, P. Malati, C. Kim, B. Dunn, Energy Technol. 2, 362 (2014).

    Google Scholar 

  61. C. Reyes, R. Somogyi, S. Niu, M.A. Cruz, F. Yang, M.J. Catenacci, C.P. Rhodes, B.J. Wiley, ACS Appl. Energy Mater. 1, 5268 (2018).

    Google Scholar 

  62. K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, Adv. Mater. 25, 4539 (2013).

    Google Scholar 

  63. C. Zhu, Y. Fu, Y. Yu, Adv. Mater. 31, 1803408 (2019).

    Google Scholar 

  64. M.K. Debe, Nature 486, 43 (2012).

    Google Scholar 

  65. X. Li, I. Sabir, Int. J. Hydrogen Energy 30, 359 (2005).

    Google Scholar 

  66. J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1, 37 (2009).

    Google Scholar 

  67. B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han, J. Xu, M. Liu, L. Zheng, Science 352, 333 (2016).

    Google Scholar 

  68. M. Winter, J.O. Besenhard, Electrochim. Acta 45, 31 (1999).

    Google Scholar 

  69. S.W. Lee, M.T. McDowell, L.A. Berla, W.D. Nix, Y. Cui, Proc. Natl. Acad. Sci. U.S.A. 109, 4080 (2012).

    Google Scholar 

  70. S. Kalnaus, K. Rhodes, C. Daniel, J. Power Sources 196, 8116 (2011).

    Google Scholar 

  71. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, ACS Nano 6, 1522 (2012).

    Google Scholar 

  72. L. Beaulieu, K. Eberman, R. Turner, L. Krause, J. Dahn, Electrochem. Solid-State Lett. 4, A137 (2001).

    Google Scholar 

  73. J. Zhu, T. Wang, F. Fan, L. Mei, B. Lu, ACS Nano 10, 8243 (2016).

    Google Scholar 

  74. Y. Liu, G. Zhou, K. Liu, Y. Cui, Acc. Chem. Res. 50, 2895 (2017).

    Google Scholar 

  75. Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, Y. Cui, Nat. Energy 1, 15029 (2016).

    Google Scholar 

  76. H. Wang, Y. Li, Y. Li, Y. Liu, D. Lin, C. Zhu, G. Chen, A. Yang, K. Yan, H. Chen, Nano Lett. 19, 1326 (2019).

    Google Scholar 

  77. L.-F. Cui, L. Hu, H. Wu, J.W. Choi, Y. Cui, J. Electrochem. Soc. 158, A592 (2011).

    Google Scholar 

  78. M.H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong, S. Hong, J.H. Ryu, T.S. Kim, J.K. Park, H. Lee, Adv. Mater. 25, 1571 (2013).

    Google Scholar 

  79. I.-s. Kim, G. Blomgren, P. Kumta, J. Power Sources 130, 275 (2004).

    Google Scholar 

  80. Y. Zhang, Y. Huang, J.A. Rogers, Curr. Opin. Solid State Mater. Sci. 19, 190 (2015).

    Google Scholar 

  81. W.J. Song, S. Yoo, G. Song, S. Lee, M. Kong, J. Rim, U. Jeong, S. Park, Batteries Supercaps 2, 181 (2019).

    Google Scholar 

  82. W. Liu, M.S. Song, B. Kong, Y. Cui, Adv. Mater. 29, 1603436 (2017).

    Google Scholar 

  83. B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, W. Wang, Nat. Commun. 6, 6303 (2015).

    Google Scholar 

  84. Y. Zhao, Y. Ding, Y. Li, L. Peng, H.R. Byon, J.B. Goodenough, G. Yu, Chem. Soc. Rev. 44, 7968 (2015).

    Google Scholar 

  85. B.H. Robb, J.M. Farrell, M.P. Marshak, Joule (2019), doi:https://doi.org/10.1016/j.joule.2019.07.002.

  86. C.A. Aubin, S. Choudhury, R. Jerch, L.A. Archer, J.H. Pikul, R.F. Shepherd, Nature 571, 511 (2019).

    Google Scholar 

  87. J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Energy Environ. Sci. 7, 1117 (2014).

    Google Scholar 

  88. J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz, J.W. Long, D.R. Rolison, Science 356, 415 (2017).

    Google Scholar 

  89. J.S. Ko, A.B. Geltmacher, B.J. Hopkins, D.R. Rolison, J.W. Long, J.F. Parker, ACS Appl. Energy Mater. 2, 212 (2018).

    Google Scholar 

  90. A. Jana, R.E. García, Nano Energy 41, 552 (2017).

    Google Scholar 

  91. X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 117, 10403 (2017).

    Google Scholar 

  92. J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Nat. Energy 1 (2019).

  93. N. Li, W. Wei, K. Xie, J. Tan, L. Zhang, X. Luo, K. Yuan, Q. Song, H. Li, C. Shen, Nano Lett. 18, 2067 (2018).

    Google Scholar 

  94. A. Stein, R.C. Schroden, Curr. Opin. Solid State Mater. Sci. 5, 553 (2001).

    Google Scholar 

  95. K.A. Arpin, A. Mihi, H.T. Johnson, A.J. Baca, J.A. Rogers, J.A. Lewis, P.V. Braun, Adv. Mater. 22, 1084 (2010).

    Google Scholar 

  96. X. You, J.H. Pikul, W.P. King, J.J. Pak, Appl. Phys. Lett. 102, 253103 (2013).

    Google Scholar 

  97. J.H. Pikul, Z. Dai, X. Yu, H. Zhang, T. Kim, P.V. Braun, W.P. King, J. Micromech. Microeng. 24, 105006 (2014).

    Google Scholar 

  98. J.H. Pikul, S. Özerinç, B. Liu, R. Zhang, P.V. Braun, V.S. Deshpande, W.P. King, Sci. Rep. 9, 719 (2019).

    Google Scholar 

  99. Z. Hsain, J.H. Pikul, Adv. Funct. Mater. (2019), https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201905631.

  100. X. Xia, A. Afshar, H. Yang, C.M. Portela, D.M. Kockman, C.V. DiLeo, J.R. Greer, Nature 573, 205 (2019).

    Google Scholar 

Download references

Acknowledgements

J.H.P acknowledges support from the US Office of Naval Research, Grant No. N00014-19-1-2353. J.W.L. acknowledges support from the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Pikul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikul, J.H., Long, J.W. Architected materials for advanced electrochemical systems. MRS Bulletin 44, 789–795 (2019). https://doi.org/10.1557/mrs.2019.229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.229

Navigation