Skip to main content
Log in

Bioinspired nonequilibrium search for novel materials

  • Bioinspired Far-From-Equilibrium Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Searching for materials with improved or perhaps completely novel properties involves an iterative process intended to successively narrow the gap between some initial starting point and the desired design target. This can be viewed as an optimization problem in a high-dimensional search space, often with many dozens of material parameters that need to be tuned. To tackle this, the evolutionary process in biology has been a source of inspiration in developing effective search algorithms. However, reaping the full benefits of bioinspired searches for materials design requires some thought. Here, we go beyond traditional black box algorithms and take a broader view of computational evolution strategies. We discuss recent strategies that exploit knowledge about the material configuration statistics and we highlight the advantages when time-varying environments are considered. Throughout, we emphasize that the search strategies themselves can be viewed as a nonequilibrium dynamical process in design space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. T. Back, H.P. Schwefel, Evol. Comp. 1, 1 (1993).

    Google Scholar 

  2. A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Springer, New York, 2003).

    Google Scholar 

  3. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan, Ann Arbor, 1975).

    Google Scholar 

  4. N. Hansen, S.D. Müller, P. Koumoutsakos, Evol. Comp. 11, 1 (2003).

    Google Scholar 

  5. H. Lipson, J.B. Pollack, Nature 406, 974 (2000).

    Google Scholar 

  6. E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, G. Kahl, J. Chem. Phys. 136, 214102 (2012).

    Google Scholar 

  7. A.O. Lyakhov, A.R. Oganov, Phys. Rev. B 84, 092103 (2011).

    Google Scholar 

  8. J. Qin, G.S. Khaira, Y.R. Su, G.P. Garner, M. Miskin, H.M. Jaeger, J.J. de Pablo, Soft Matter 9, 11467 (2013).

    Google Scholar 

  9. G.S. Khaira, J. Qin, G.P. Garner, S. Xiong, L. Wan, R. Ruiz, H.M. Jaeger, P.F. Nealey, J.J. de Pablo, ACS Macro Lett. 3, 747 (2014).

    Google Scholar 

  10. M.Z. Miskin, H.M. Jaeger, Nat. Mater. 12, 326 (2013).

    Google Scholar 

  11. M.Z. Miskin, G.S. Khaira, J.J. de Pablo, H.M. Jaeger, Proc. Natl. Acad. Sci. U.S.A. 113, 34 (2016).

    Google Scholar 

  12. S.A. Frank, M. Slatkin, Trends Ecol. Evol. 7, 92 (1992).

    Google Scholar 

  13. M.Z. Miskin, The Automated Design of Materials Far from Equilibrium, Springer Thesis (Springer, Switzerland, 2016).

    Google Scholar 

  14. N.J.A. Sloane, R.H. Hardin, T.D.S. Duff, J.H. Conway, Discrete Comput. Geom. 14, 237 (1995).

    Google Scholar 

  15. M.Z. Miskin, H.M. Jaeger, Soft Matter 10, 3708 (2014).

    Google Scholar 

  16. L.K. Roth, H.M. Jaeger, Soft Matter 12, 1107 (2016).

    Google Scholar 

  17. F.S. Bates, M.A. Hillmyer, T.P. Lodge, C.M. Bates, K.T. Delaney, G.H. Fredrickson, Science 336, 434 (2012).

    Google Scholar 

  18. H.M. Jaeger, J.J. de Pablo, APL Mater. 4, 053209 (2016).

    Google Scholar 

  19. J. Norberg, D.P. Swaney, J. Dushoff, J. Lin, R. Casagrandi, S.A. Levin, Proc. Natl. Acad. Sci. U.S.A. 98, 11376 (2001).

    Google Scholar 

  20. N. Kashtan, U. Alon, Proc. Natl. Acad. Sci. U.S.A. 102, 13773 (2005).

    Google Scholar 

  21. R.C. Lewontin, D. Cohen, Proc. Natl. Acad. Sci. U.S.A. 62, 1056 (1969).

    Google Scholar 

  22. E. Kussell, R. Kishony, N.Q. Balaban, S. Leibler, Genetics 169, 1807 (2005).

    Google Scholar 

  23. R.P. Bhattacharyya, A. Remenyi, B.J. Yeh, W.A. Lim, Annu. Rev. Biochem. 75, 655 (2006).

    Google Scholar 

  24. H. Lipson, J.B. Pollack, N.P. Suh, Evolution 56, 1549 (2002).

    Google Scholar 

  25. M. Parter, N. Kashtan, U. Alon, PLoS Comput. Biol. 4, e1000206 (2008).

    Google Scholar 

  26. E. Kussell, S. Leibler, A. Grosberg, Phys. Rev. Lett. 97, 068101 (2006).

    Google Scholar 

  27. E. Kussell, S. Leibler, Science 309, 2075 (2005).

    Google Scholar 

  28. S. Wang, J. Mata-Fink, B. Kriegsman, M. Hanson, D.J. Irvine, H.N. Eisen, D.R. Burton, K.D. Wittrup, M. Kardar, A.K. Chakraborty, Cell 160, 785 (2015).

    Google Scholar 

  29. M. Karplus, Fold. Des. 2, S69 (1997).

    Google Scholar 

  30. P.W. Rothemund, ICCAD-2005, IEEE/ACM Int. Conf. Comp. Aid. Des. (2005) pp. 471–478.

  31. J.L. England, E.I. Shakhnovich, Condens. Matter Soft (2002), arXiv:cond-mat/0208447.

  32. P. Schuster, W. Fontana, P.F. Stadler, I.L. Hofacker, Proc. R. Soc. Lond. B 255, 279 (1994).

    Google Scholar 

  33. W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger, P. Schuster, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, 2083 (1993).

    Google Scholar 

  34. K.E. Dunn, F. Dannenberg, T.E. Ouldridge, M. Kwiatkowska, A.J. Turberfield, J. Bath, Nature 525, 82 (2015).

    Google Scholar 

  35. V.I. Abkevich, A.M. Gutin, E.I. Shakhnovich, J. Chem. Phys. 101, 6052 (1994).

    Google Scholar 

  36. V.I. Abkevich, A.M. Gutin, E.I. Shakhnovich, Proteins Struct. Funct. Bioinform. 31, 335 (1998).

    Google Scholar 

  37. T. Fink, R. Ball, Phys. Rev. Lett. 87, 198103 (2001).

    Google Scholar 

  38. E.A. Schultes, D.P. Bartel, Science 289, 448 (2000).

    Google Scholar 

  39. A. Murugan, Z. Zeravcic, M.P. Brenner, S. Leibler, Proc. Natl. Acad. Sci. U.S.A. 112, 54 (2015).

    Google Scholar 

  40. W. Zhong, D.J. Schwab, A. Murugan, J. Stat. Phys. 167, 806 (2017).

    Google Scholar 

  41. Y. Ke, L.L. Ong, W.M. Shih, P. Yin, Science 338, 1177 (2012).

    Google Scholar 

  42. K. Bertoldi, V. Vitelli, J. Christensen, M. van Hecke, Nat. Rev. Mater. 2, 17066 (2017).

    Google Scholar 

  43. C.D. Santangelo, Annu. Rev. Condens. Matter Phys. 8, 165 (2017).

    Google Scholar 

  44. M. Stern, M.B. Pinson, A. Murugan, Phys. Rev. X 7, 041070 (2017).

    Google Scholar 

  45. M.B. Pinson, M. Stern, A. Carruthers Ferrero, T.A. Witten, E. Chen, A. Murugan, Nat. Commun. 8, 15477 (2017).

    Google Scholar 

  46. J.W. Rocks, N. Pashine, I. Bischofberger, C.P. Goodrich, A.J. Liu, S.R. Nagel, Proc. Natl. Acad. Sci. U.S.A. 114, 2520 (2017).

    Google Scholar 

  47. T. Tlusty, A. Libchaber, J.-P. Eckmann, Phys. Rev. X 7, 021037 (2017).

    Google Scholar 

  48. L. Yan, R. Ravasio, C. Brito, M. Wyart, Proc. Natl. Acad. Sci. U.S.A. 114, 2526 (2017).

    Google Scholar 

  49. E. Hawkes, B. An, N.M. Benbernou, H. Tanaka, S. Kim, E.D. Demaine, D. Rus, R.J. Wood, Proc. Natl. Acad. Sci. U.S.A. 107, 12441 (2010).

    Google Scholar 

  50. A.S. Raman, K.I. White, R. Ranganathan, Cell 166, 468 (2016).

    Google Scholar 

  51. A. Pumir, J. Graves, R. Ranganathan, B.I. Shraiman, Proc. Natl. Acad. Sci. U.S.A. 105, 10354 (2008).

    Google Scholar 

  52. M. Hemery, O. Rivoire, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 042704 (2015).

    Google Scholar 

  53. A.G. Athanassiadis, M.Z. Miskin, P. Kaplan, N. Rodenberg, S.H. Lee, J. Merritt, E. Brown, J. Amend, H. Lipson, H.M. Jaeger, Soft Matter 10, 4859 (2014).

    Google Scholar 

  54. A. Baule, H.A. Makse, Soft Matter 10, 4423 (2014).

    Google Scholar 

  55. D.-H. Nguyen, E. Azma, P. Sornay, F. Radjai, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 022203 (2015).

    Google Scholar 

  56. D. Dumont, M. Houze, P. Rambach, T. Salez, S. Patinet, P. Damman, Phys. Rev. Lett. 120, 088001 (2018).

    Google Scholar 

  57. M.H. Huntley, A. Murugan, M.P. Brenner, Proc. Natl. Acad. Sci. U.S.A. 113, 5841 (2016).

    Google Scholar 

  58. K. Zhao, T. Mason, Phys. Rev. Lett. 99, 268301 (2007).

    Google Scholar 

  59. K.L. Young, M.L. Personick, M. Engel, P.F. Damasceno, S.N. Barnaby, R. Bleher, T. Li, S.C. Glotzer, B. Lee, C.A. Mirkin, Angew. Chem. Int. Ed. Engl. 52, 13980 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Murugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, A., Jaeger, H.M. Bioinspired nonequilibrium search for novel materials. MRS Bulletin 44, 96–105 (2019). https://doi.org/10.1557/mrs.2019.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.22

Navigation