Skip to main content
Log in

Nature’s functional nanomaterials: Growth or self-assembly?

  • Bioinspired Far-From-Equilibrium Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nature’s optical nanomaterials are poised to form the platform for future optical devices with unprecedented functionality. The brilliant colors of many animals arise from the physical interaction of light with nanostructured, multifunctional materials. While their length scale is typically in the 100-nm range, the morphology of these structures can vary strongly. These biological nanostructures are obtained in a controlled manner, using biomaterials under ambient conditions. The formation processes nature employs use elements of both equilibrium self-assembly and far-from-equilibrium and growth processes. This renders not only the colors themselves, but also the formation processes technologically and ecologically highly relevant. Yet, for many biological nanostructured materials, little is known about the formation mechanisms—partially due to a lack of in vivo imaging methods. Here, we present the toolbox of natural multifunctional nanostructures and the current knowledge about the understanding of their far-from-equilibrium assembly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, Curr. Biol. 18, 429 (2008).

    Google Scholar 

  2. T.B.H. Schroeder, J. Houghtaling, B.D. Wilts, M. Mayer, Adv. Mater. 30, 1705322 (2018).

    Google Scholar 

  3. M. Srinivasarao, Chem. Rev. 99, 1935 (1999).

    Google Scholar 

  4. P. Vukusic, J.R. Sambles, Nature 424, 852 (2003).

    Google Scholar 

  5. M. Kolle, S. Lee, Adv. Mater. 30, 1702669 (2017).

    Google Scholar 

  6. A.M. Telford, B.S. Hawkett, C. Such, C. Neto, Chem. Mater. 25, 3472 (2013).

    Google Scholar 

  7. Z. Gan, M.D. Turner, M. Gu, Sci. Adv. 2, e1600084 (2016).

    Google Scholar 

  8. J.A. Dolan, B.D. Wilts, S. Vignolini, J.J. Baumberg, U. Steiner, T.D. Wilkinson, Adv. Opt. Mater. 3, 12 (2015).

    Google Scholar 

  9. S.T. Hyde, M. O’Keeffe, D.M. Proserpio, Angew. Chem. Int. Ed. Engl. 47, 7996 (2008).

    Google Scholar 

  10. S.T. Hyde, S. Andersson, B. Ericson, K. Larsson, Z. Kristallogr. Cryst. Mater. 168, 213 (1984).

    Google Scholar 

  11. A.M. Seddon, J. Hallett, C. Beddoes, T.S. Plivelic, A.M. Squires, Langmuir 30, 5705 (2014).

    Google Scholar 

  12. R. Negrini, R. Mezzenga, Langmuir 28, 16455 (2012).

    Google Scholar 

  13. A.K. Khandpur, S. Foerster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules 28, 8796 (1995).

    Google Scholar 

  14. G.S. Attard, J.C. Glyde, C.G. Göltner, Nature 378, 366 (1995).

    Google Scholar 

  15. V. Alfredsson, M.W. Anderson, Chem. Mater. 8, 1141 (1996).

    Google Scholar 

  16. A. Zabara, R. Negrini, O. Onaca-Fischer, R. Mezzenga, Small 9, 3602 (2013).

    Google Scholar 

  17. C.J. Drummond, C. Fong, Curr. Opin. Colloid Interface Sci. 4, 449 (1999).

    Google Scholar 

  18. Z.A. Almsherqi, T. Landh, S.D. Kohlwein, Y. Deng, Int. Rev. Cell Mol. Biol. 274, 275 (2009).

    Google Scholar 

  19. V. Saranathan, A.E. Seago, A. Sandy, S. Narayanan, S.G. Mochrie, E.R. Dufresne, H. Cao, C.O. Osuji, R.O. Prum, Nano Lett. 15, 3735 (2015).

    Google Scholar 

  20. B.D. Wilts, B.A. Zubiri, M.A. Klatt, B. Butz, M.G. Fischer, S.T. Kelly, E. Spiecker, U. Steiner, G.E. Schröder-Turk, Sci. Adv. 3, e1603119 (2017).

    Google Scholar 

  21. M.E. Evans, R. Roth, Phys. Rev. Lett. 112, 038102 (2014).

    Google Scholar 

  22. S. Salentinig, S. Phan, J. Khan, A. Hawley, B.J. Boyd, ACS Nano 7, 10904 (2013).

    Google Scholar 

  23. M. Saba, M. Thiel, M.D. Turner, S.T. Hyde, M. Gu, K. Grosse-Brauckmann, D.N. Neshev, K. Mecke, G.E. Schröder-Turk, Phys. Rev. Lett. 106, 103902 (2011).

    Google Scholar 

  24. B.D. Wilts, K. Michielsen, H. De Raedt, D.G. Stavenga, Interface Focus 2, 681 (2012).

    Google Scholar 

  25. C. Pouya, P. Vukusic, Interface Focus 2, 645 (2012).

    Google Scholar 

  26. B. Winter, B. Butz, C. Dieker, G.E. Schröder-Turk, K. Mecke, E. Spiecker, Proc. Natl. Acad. Sci. U.S.A. 112, 12911 (2015).

    Google Scholar 

  27. M. Saba, B.D. Wilts, J. Hielscher, G.E. Schröder-Turk, Mater. Today Proc. 1, 193 (2014).

    Google Scholar 

  28. G.E. Schröder-Turk, S. Wickham, H. Averdunk, F. Brink, J.D. Fitz Gerald, L. Poladian, M.C. Large, S.T. Hyde, J. Struct. Biol. 174, 290 (2011).

    Google Scholar 

  29. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Google Scholar 

  30. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Google Scholar 

  31. V. Saranathan, J.D. Forster, H. Noh, S.-F. Liew, S.G.J. Mochrie, H. Cao, E.R. Dufresne, R.O. Prum, J. R. Soc. Interface 9, 2563 (2012).

    Google Scholar 

  32. M.D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M.H. Ellisman, M. Auer, R.O. Prum, J. R. Soc. Interface 6, S213 (2009).

    Google Scholar 

  33. R.O. Prum, in Bird Coloration, Volume 1: Mechanisms and Measurements, G.E. Hill, K.J. McGraw, Eds. (Harvard University Press, Cambridge, MA, 2006), pp. 295–353.

  34. R.O. Prum, R.H. Torres, S. Williamson, J. Dyck, Nature 396, 28 (1998).

    Google Scholar 

  35. L. D’Alba, L. Kieffer, M.D. Shawkey, J. Exp. Biol. 215, 1272 (2012).

    Google Scholar 

  36. D.G. Stavenga, J. Tinbergen, H.L. Leertouwer, B.D. Wilts, J. Exp. Biol. 214, 3960 (2011).

    Google Scholar 

  37. H.L. Leertouwer, B.D. Wilts, D.G. Stavenga, Opt. Express 19, 24061 (2011).

    Google Scholar 

  38. H. Yin, B. Dong, X. Liu, T. Zhan, L. Shi, J. Zi, E. Yablonovitch, Proc. Natl. Acad. Sci. U.S.A. 109, 10798 (2012).

    Google Scholar 

  39. B. Angelov, A. Angelova, M. Drechsler, V.M. Garamus, R. Mutafchieva, S. Lesieur, Soft Matter 11, 3686 (2015).

    Google Scholar 

  40. X. Cao, D. Xu, Y. Yao, L. Han, O. Terasaki, S. Che, Chem. Mater. 28, 3961 (2016).

    Google Scholar 

  41. H. Ghiradella, J. Morphol. 202, 69 (1989).

    Google Scholar 

  42. H. Ghiradella, Adv. Insect Physiol. 38, 135 (2010).

    Google Scholar 

  43. V. Saranathan, C.O. Osuji, S.G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E.R. Dufresne, R.O. Prum, Proc. Natl. Acad. Sci. U.S.A. 107, 11676 (2010).

    Google Scholar 

  44. H. Ghiradella, J. Morphol. 202, 69 (1989).

    Google Scholar 

  45. H. Ghiradella, in Microscopic Anatomy of Invertebrates, Volume 11A, M. Locke, Ed. (Wiley, New York, 1998), pp. 257–287.

  46. A. Dinwiddie, R. Null, M. Pizzano, L. Chuong, A.L. Krup, H.E. Tan, N.H. Patel, Dev. Biol. 392, 404 (2014).

    Google Scholar 

  47. V. Saranathan, C.O. Osuji, S.G. Mochrie, H. Noh, S. Narayanan, A. Sandy, E.R. Dufresne, R.O. Prum, Proc. Natl. Acad. Sci. U.S.A. 107, 11676 (2010).

    Google Scholar 

  48. A.R. Parker, H.E. Townley, Bioinspir. Biomim. Nanobiomater. 4, 68 (2015).

    Google Scholar 

  49. Y. Guo, D. Li, S. Zhang, Y. Yang, J.-J. Liu, X. Wang, C. Liu, D.E. Milkie, R.P. Moore, U.S. Tulu, D.P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, D. Li, Cell 175, 1430 (2018).

    Google Scholar 

  50. J.B. Wagner, F. Cavalca, C.D. Damsgaard, L.D.L. Duchstein, T.W. Hansen, Micron 43, 1169 (2012).

    Google Scholar 

  51. M. Pribil, M. Labs, D. Leister, J. Exp. Bot. 65, 1955 (2014).

    Google Scholar 

  52. E.R. Dufresne, H. Noh, V. Saranathan, S.G. Mochrie, H. Cao, R.O. Prum, Soft Matter 5, 1792 (2009).

    Google Scholar 

  53. B. Dong, T. Zhan, X. Liu, L. Jiang, F. Liu, X. Hu, J. Zi, Phys. Rev. E 84, 011915 (2011).

    Google Scholar 

  54. R.O. Prum, E.R. Dufresne, T. Quinn, K. Waters, J. R. Soc. Interface 6, S253 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo D. Wilts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilts, B.D., Clode, P.L., Patel, N.H. et al. Nature’s functional nanomaterials: Growth or self-assembly?. MRS Bulletin 44, 106–112 (2019). https://doi.org/10.1557/mrs.2019.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.21

Navigation