Skip to main content
Log in

Insights into fundamental deformation processes from advanced in situ transmission electron microscopy

  • Advances in In situ Nanomechanical Testing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In situ nanomechanical testing in (scanning) transmission electron microscopy provides unique opportunities for studying fundamental deformation processes in materials. New insights have been gained by combining advanced imaging techniques with novel preparation methods and controlled loading scenarios. For instance, by applying in situ high-resolution imaging during tensile deformation of metallic nanostructures, the interplay of dislocation slip and surface diffusion has been identified as the key enabler of superplasticity. Evidence for dislocation pinning by hydrogen defect complexes has been provided by in situ imaging under cyclic pillar compression in a tunable gas environment. And, for the very first time, individual dislocations have been moved around in situ in two-dimensional materials by combining micromanipulation and imaging in a scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. P.B. Hirsch, R.W. Horne, M.J. Whelan, Philos. Mag. J. Theor. Exp. Appl. Phys. 1, 677 (1956).

    CAS  Google Scholar 

  2. H.G.F. Wilsdorf, Rev. Sci. Instrum. 29, 323 (1958).

    Article  CAS  Google Scholar 

  3. B.H. Kear, Rev. Sci. Instrum. 31, 1007 (1960).

    Article  Google Scholar 

  4. Q. Yu, M. Legros, A.M. Minor, MRS Bull. 40, 62 (2015).

    Article  Google Scholar 

  5. G. Dehm, J.M. Howe, J. Zweck, In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science (Wiley, Weinheim, Germany, 2012).

    Book  Google Scholar 

  6. S. Oh, M. Legros, D. Kiener, G. Dehm, Nat. Mater. 8, 95 (2009).

    Article  CAS  Google Scholar 

  7. D. Kiener, A.M. Minor, Nano Lett. 11, 3816 (2011).

    Article  CAS  Google Scholar 

  8. J.P. Liebig, M. Göken, G. Richter, M. Mačković, T. Przybilla, E. Spiecker, O.N. Pierron, B. Merle, Ultramicroscopy 171, 82 (2016).

    Article  CAS  Google Scholar 

  9. M. Mackovic, T. Przybilla, C. Dieker, P. Herre, S. Romeis, H. Stara, N. Schrenker, W. Peukert, E. Spiecker, Front. Mater. 4, 1 (2017).

  10. D. Kiener, Z. Zhang, S. Šturm, S. Cazottes, P. Imrich, C. Kirchlechner, G. Dehm, Philos. Mag. 92, 3269 (2012).

    Article  CAS  Google Scholar 

  11. S. Lee, J. Jeong, Y. Kim, S.M. Han, D. Kiener, S.H. Oh, Acta Mater. 110, 283 (2016).

    Article  CAS  Google Scholar 

  12. N. Li, J. Wang, S. Mao, H. Wang, MRS Bull. 41, 305 (2016).

    Article  CAS  Google Scholar 

  13. L. Wang, Z. Zhang, X. Han, NPG Asia Mater. 5, e40 (2013).

    Article  CAS  Google Scholar 

  14. G. Dehm, M. Legros, D. Kiener, “In-Situ TEM Straining Experiments: Recent Progress in Stages and Small-Scale Mechanics,” in In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science, G. Dehm, Ed. (Wiley VCH Verlag, Weinheim, Germany, 2012), pp. 227–254.

    Chapter  Google Scholar 

  15. L. Tian, J. Li, J. Sun, E. Ma, Z.W. Shan, Sci. Rep. 3, 2113 (2013).

    Article  Google Scholar 

  16. W. Guo, Z. Wang, J. Li, Nano Lett. 15, 6582 (2015).

    Article  CAS  Google Scholar 

  17. J. Sun, L. He, Y.-C. Lo, T. Xu, H. Bi, L. Sun, Z. Zhang, S.X. Mao, J. Li, Nat. Mater. 13, 1007 (2014).

    Article  CAS  Google Scholar 

  18. L. Zhong, F. Sansoz, Y. He, C. Wang, Z. Zhang, S.X. Mao, Nat. Mater. 16, 439 (2017).

    Article  CAS  Google Scholar 

  19. P. Liu, X. Wei, S. Song, L. Wang, A. Hirata, T. Fujita, X. Han, Z. Zhang, M. Chen, Acta Mater. 165, 99 (2019).

    Article  CAS  Google Scholar 

  20. Z.W. Shan, L. Lu, A.M. Minor, E.A. Stach, S.X. Mao, JOM 60, 71 (2008).

    Article  CAS  Google Scholar 

  21. E.W. Qin, L. Lu, N.R. Tao, J. Tan, K. Lu, Acta Mater. 57, 6215 (2009).

    Article  CAS  Google Scholar 

  22. I.J. Beyerlein, X. Zhang, A. Misra, Annu. Rev. Mater. Res. 44 329 (2014).

    Article  CAS  Google Scholar 

  23. I.A. Ovid’ko, A.G. Sheinerman, Rev. Adv. Mater. Sci. 44, 1 (2016).

    Google Scholar 

  24. L. Sun, X. He, J. Lu, npj Comput. Mater. 4, 6 (2018).

    Article  CAS  Google Scholar 

  25. Y.A. Shin, S. Yin, X. Li, S. Lee, S. Moon, J. Jeong, M. Kwon, S.J. Yoo, Y.-M. Kim, T. Zhang, H. Gao, S.H. Oh, Nat. Commun. 7, 10772 (2016).

    Article  CAS  Google Scholar 

  26. X. Li, S. Yin, S.H. Oh, H. Gao, Scr. Mater. 133, 105 (2017).

    Article  CAS  Google Scholar 

  27. Y. Ikuhara, T. Suzuki, Y. Kubo, Philos. Mag. Lett. 66, 323 (1992).

    Article  CAS  Google Scholar 

  28. T. Ohmura, A.M. Minor, E.A. Stach, J.W. Morris, J. Mater. Res. 19, 3626 (2004).

    Article  CAS  Google Scholar 

  29. P.J. Imrich, C. Kirchlechner, D. Kiener, G. Dehm, Scr. Mater. 100, 94 (2015).

    Article  CAS  Google Scholar 

  30. S. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara, Sci. Adv. 2, e1501926 (2016).

    Article  CAS  Google Scholar 

  31. W.H. Johnson, Nature 11, 393 (1875).

    Article  Google Scholar 

  32. A.H. Cottrell, B. Bilby, Proc. Phys. Soc. Lond. A 62, 49 (1949).

    Article  Google Scholar 

  33. I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K. Nygren, Metall. Mater. Trans. A 46, 2323 (2015).

    Article  CAS  Google Scholar 

  34. I. Robertson, Eng. Fract. Mech. 64, 649 (1999).

    Article  Google Scholar 

  35. I.M. Robertson, Eng. Fract. Mech. 68, 671 (2001).

    Article  Google Scholar 

  36. J. Song, W. Curtin, Acta Mater. 68, 61 (2014).

    Article  CAS  Google Scholar 

  37. J. Song, W. Curtin, Nat. Mater. 12, 145 (2013).

    Article  CAS  Google Scholar 

  38. D. Xie, S. Li, M. Li, Z. Wang, P. Gumbsch, J. Sun, E. Ma, J. Li, Z. Shan, Nat. Commun. 7, 13341 (2016).

    Article  CAS  Google Scholar 

  39. O.V. Yazyev, S.G. Louie, Phys. Rev. B Condens. Matter 81, 195420 (2010).

    Article  CAS  Google Scholar 

  40. J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, A.I. Kirkland, Science 337, 209 (2012).

    Article  CAS  Google Scholar 

  41. O. Lehtinen, S. Kurasch, A.V. Krasheninnikov, U. Kaiser, Nat. Commun. 4, 2098 (2013).

    Article  CAS  Google Scholar 

  42. J.S. Alden, A.W. Tsen, P.Y. Huang, R. Hovden, L. Brown, J. Park, D.A. Muller, P.L. McEuen, Proc. Natl. Acad. Sci. U.S.A. 110, 11256 (2013).

    Article  CAS  Google Scholar 

  43. B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann, H.B. Weber, B. Meyer, E. Spiecker, Nature 505, 533 (2014).

    Article  CAS  Google Scholar 

  44. P. Schweizer, C. Dolle, E. Spiecker, Sci. Adv. 4, eaat4712 (2018).

    Article  CAS  Google Scholar 

  45. F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker, S. Shallcross, H.B. Weber, Nat. Phys. 11, 650 (2015).

    Article  CAS  Google Scholar 

  46. S. Shallcross, S. Sharma, H.B. Weber, Nat. Commun. 8, 342 (2017).

    Article  CAS  Google Scholar 

  47. K. Müller, H. Ryll, I. Ordavo, S. Ihle, L. Strüder, K. Volz, J. Zweck, H. Soltau, A. Rosenauer, Appl. Phys. Lett. 101, 212110 (2012).

    Article  CAS  Google Scholar 

  48. V.B. Ozdol, C. Gammer, X.G. Jin, P. Ercius, C. Ophus, J. Ciston, A.M. Minor, Appl. Phys. Lett. 106, 253107 (2015).

    Article  CAS  Google Scholar 

  49. C. Gammer, J. Kacher, C. Czarnik, O.L. Warren, J. Ciston, A.M. Minor, Appl. Phys. Lett. 109, 081906 (2016).

    Article  CAS  Google Scholar 

  50. T.C. Pekin, C. Gammer, J. Ciston, C. Ophus, A.M. Minor, Scr. Mater. 146, 87 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdmann Spiecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiecker, E., Oh, S.H., Shan, ZW. et al. Insights into fundamental deformation processes from advanced in situ transmission electron microscopy. MRS Bulletin 44, 443–449 (2019). https://doi.org/10.1557/mrs.2019.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.129

Navigation