Skip to main content

Advertisement

Log in

Polymer and composite electrolytes

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. This article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mizushima, P.C. Jones. P.J. Weisman, J.B. Goodenough, Mater. Res. Bull. 15, 783 (1980).

    Google Scholar 

  2. W.S. Harris, “Electrochemical Studies in Cyclic Esters,” PhD thesis, University of California, Berkeley (1958).

  3. R. Fong, U. Von Sacken, J.R. Dahn, J. Electrochem. Soc. 137, 2009 (1990).

    Google Scholar 

  4. D.E. Fenton, J.M. Parker, P.V. Wright, Polymer 14, 589 (1973).

    Google Scholar 

  5. M.B. Armand, Annu. Rev. Mater. Sci. 16, 245 (1986).

    Google Scholar 

  6. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  7. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).

    Google Scholar 

  8. R. Mercier, J.P. Malugani, B. Fahys, G. Robert, Solid State Ionics 5, 663 (1981).

    Google Scholar 

  9. H. Wada, M. Menetrier, A. Levasseur, P. Hagenmuller, Mater. Res. Bull. 18, 189 (1983).

    Google Scholar 

  10. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, Nat. Mater. 10, 682 (2011).

    Google Scholar 

  11. Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu, N.J. Dudney, J. Kiggans, K. Hong, A.J. Rondinone, C. Liang, J. Am. Chem. Soc. 135, 975 (2013).

    Google Scholar 

  12. Z. Zhang, J.H. Kennedy, Solid State Ionics 38, 217 (1990).

    Google Scholar 

  13. C. Monroe, J. Newman, J. Electrochem. Soc. 152, A396 (2005).

  14. J.S. Newman, K.E. Thomas-Alyea, Electrochemical Systems, 3rd ed. (Prentice-Hall, Englewood Cliffs, NJ, 2004).

  15. Y.P. Ma, M. Doyle, T.F. Fuller, M.M. Doeff, L.C. De Jonghe, J. Newman, J. Electrochem. Soc. 142, 1859 (1995).

    Google Scholar 

  16. D.M. Pesko, K. Timachova, R. Bhattacharya, M.C. Smith, I. Villaluenga, J. Newman, N.P. Balsara, J. Electrochem. Soc. 164, E3569 (2017).

  17. J. Shi, C.A. Vincent, Solid State Ionics 60, 11 (1993).

    Google Scholar 

  18. A.A. Teran, M.H. Tang, S.A. Mullin, N.P. Balsara, Solid State Ionics 203, 18 (2011).

    Google Scholar 

  19. P.G. Bruce, C.A. Vincent, J. Electroanal. Chem. 225, 1 (1987).

    Google Scholar 

  20. M. Watanabe, M. Rikukawa, K. Sanui, N. Ogata, J. Appl. Phys. 58, 736 (1985).

    Google Scholar 

  21. M. Doyle, J. Newman, J. Electrochem. Soc. 142, 3465 (1995).

    Google Scholar 

  22. N.P. Balsara, J. Newman, J. Electrochem. Soc. 162, A2720 (2015).

  23. I. Villaluenga, K.H. Wujcik, W. Tong, D. Devaux, D.H.C. Wong, J.M. DeSimone, N.P. Balsara, Proc. Natl. Acad. Sci. U.S.A. 113, 52 (2016).

    Google Scholar 

  24. X.G. Sun, C.L. Reeder, J.B. Kerr, Macromolecules 37, 2219 (2004).

    Google Scholar 

  25. R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.P. Bonnet, T.N.T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 12, 452 (2013).

    Google Scholar 

  26. M. Doyle, T.F. Fuller, J. Newman, Electrochim. Acta 39, 2073 (1994).

    Google Scholar 

  27. D.T. Hallinan, N.P. Balsara, Annu. Rev. Mater. Res. 43, 503 (2013).

    Google Scholar 

  28. D.M. Pesko, Y. Jung, A.L. Hasan, M.A. Webb, G.W. Coates, T.F. Miller, N.P. Balsara, Solid State Ionics 289 118 (2016).

  29. S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prudhomme, M. Armand, Macromolecules 27, 7469 (1994).

    Google Scholar 

  30. O. Oparaji, S. Narayanan, A. Sandy, S. Ramakrishnan, D. Hallinan, Macromolecules 51, 2591 (2018).

    Google Scholar 

  31. J. Sax, J.M. Ottino, Polym. Eng. Sci. 23, 165 (1983).

    Google Scholar 

  32. I. Villaluenga, X.C. Chen, D. Devaux, D.T. Hallinan, N.P. Balsara, Macromolecules 48, 358 (2015).

    Google Scholar 

  33. K.-H. Shen, J.R. Brown, L.M. Hall, ACS Macro Lett. 7, 1092 (2018).

    Google Scholar 

  34. G. Desmet, S. Deridder, J. Chromatogr. A 1218, 32 (2011).

    Google Scholar 

  35. J.C. Maxwell, Treatise on Electricity and Magnetism, 3rd ed. (Academic Reprints, Stanford, CA, 1953), vol. 1.

  36. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2013).

    Google Scholar 

  37. M.W. Matsen, F.S. Bates, Macromolecules 29, 1091 (1996).

    Google Scholar 

  38. E.W. Cochran, C.J. Garcia-Cervera, G.H. Fredrickson, Macromolecules 39, 2449 (2006).

    Google Scholar 

  39. I. Villaluenga, D.M. Pesko, K. Timachova, Z. Feng, J. Newman, V. Srinivasan, N.P. Balsara, J. Electrochem. Soc. 165, A2766 (2018).

  40. F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nature 394, 456 (1998).

    Google Scholar 

  41. D. Golodnitsky, G. Ardel, E. Peled, Solid State Ionics 147, 141 (2002).

    Google Scholar 

  42. I. Gurevitch, R. Buonsanti, A.A. Teran, B. Gludovatz, R.O. Ritchie, J. Cabana, N.P. Balsara, J. Electrochem. Soc. 160, A1611 (2013).

  43. A.P. Gast, L. Leibler, Macromolecules 19, 686 (1986).

    Google Scholar 

  44. D.A.G. Bruggeman, Ann. Phys. 416, 636 (1935).

    Google Scholar 

  45. I.V. Thorat, D.E. Stephenson, N.A. Zacharias, K. Zaghib, J.N. Harb, D.R. Wheeler, J. Power Sources 188, 592 (2009).

    Google Scholar 

  46. Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, Energy Environ. Sci. 7, 627 (2014).

    Google Scholar 

  47. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 1, 16030 (2016).

    Google Scholar 

  48. M. Keller, G.B. Appetecchi, G.-T. Kim, V. Sharova, M. Schneider, J. Schuhmacher, A. Roters, S. Passerini, J. Power Sources 353, 287 (2017).

    Google Scholar 

  49. S. Skaarup, K. West, P.M. Julian, D.M. Thomas, Solid State Ionics 40–1, 1021 (1990).

  50. D.R. MacFarlane, P.J. Newman, K.M. Nairn, M. Forsyth, Electrochim. Acta 43, 1333 (1998).

    Google Scholar 

  51. J. Zheng, Y.-Y. Hu, ACS Appl. Mater. Interfaces 10, 4113 (2018).

    Google Scholar 

  52. A. Mehrotra, P.N. Ross, V. Srinivasan, J. Electrochem. Soc. 161, A1681 (2014).

  53. M. Schleutker, J. Bahner, C.L. Tsai, D. Stolten, C. Korte, Phys. Chem. Chem. Phys. 19, 26596 (2017).

    Google Scholar 

  54. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications (Wiley, New York, 2001).

    Google Scholar 

  55. P.F. Driscoll, L. Yang, M. Gervais, J.B. Kerr, ECS Trans. 33, 33 (2011).

    Google Scholar 

  56. B. Scrosati, F. Croce, S. Panero, J. Power Sources 100, 93 (2001).

    Google Scholar 

  57. D.T. Hallinan Jr., A. Rausch, B. McGill, Chem. Eng. Sci. 154, 34 (2016).

    Google Scholar 

  58. C.A.C. Sequeira, A. Hooper, Solid State Ionics 9–10, 1131 (1983).

  59. A. Swiderska-Mocek, A. Lewandowski, J. Solid State Electrochem. 21, 1365 (2017).

    Google Scholar 

  60. S.-L. Wu, A.E. Javier, D. Devaux, N.P. Balsara, V. Srinivasan, J. Electrochem. Soc. 161, A1836 (2014).

  61. R. Jasinski, in Advances in Electrochemistry and Electrochemical Engineering, P. Delahey, C.W. Tobias, Eds. (Interscience, New York, 1971), vol. 8, pp. 253–335.

  62. W.M. Hedges, D. Pletcher, J. Chem. Soc. Faraday Trans. 1 82, 179 (1986). 63 M. Chiku, W. Tsujiwaki, E. Higuchi, H. Inoue, J. Power Sources 244, 675 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel T. Hallinan Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallinan, D.T., Villaluenga, I. & Balsara, N.P. Polymer and composite electrolytes. MRS Bulletin 43, 759–767 (2018). https://doi.org/10.1557/mrs.2018.212

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.212

Navigation