Skip to main content
Log in

Provenance, workflows, and crystallographic tools in materials science: AiiDA, spglib, and seekpath

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The near-exponential expansion in computing resources over the last few decades has enabled a rapid increase in the capabilities of computational science, including applications to materials research. In order to harness the available resources and accelerate the field of materials design, it is critically important to develop robust and reusable automation software for preparing and performing multistep computational workflows, starting with crystal structures and ending with material properties. In the domain of first-principles calculations of crystalline materials, we highlight emerging tools for automated symmetry analysis of the atomic and electronic structure. With automation capabilities in hand, the ever-increasing amount of data also becomes a serious bottleneck in terms of organization, analysis, and reproducibility. We describe some of the progress and strategic challenges in the development of a general infrastructure for coupling computational automation with data management, emphasizing data reproducibility and provenance capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G. Samsonidze, B. Kozinsky, Adv. Energy Mater. 8 (20), 1800246R1 (2018).

    Google Scholar 

  2. S. Curtarolo, W. Setyawan, G.L.W. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M.J. Mehl, H.T. Stokes, D.O. Demchenko, D. Morgan, Comput. Mater. Sci. 58, 218 (2012).

    Google Scholar 

  3. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

  4. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65, 1501 (2013).

    Google Scholar 

  5. A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dulak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, J. Phys. Condens. Matter 29, 273002 (2017).

    Google Scholar 

  6. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68, 314 (2013).

    Google Scholar 

  7. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput. Mater. Sci. 111, 218 (2016).

    Google Scholar 

  8. AiiDA, http://www.aiida.net.

  9. spglib, https://atztogo.github.io/spglib.

  10. Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Comput. Mater. Sci. 128, 140 (2017).

    Google Scholar 

  11. seekpath Web Interface, http://www.materialscloud.org/tools/seekpath.

  12. S. Gražulis, A. Merkys, A. Vaitkus, A. Le Bail, D. Chateigner, L. Vilcˇiauskas, S. Cottenier, T. Björkman, P. Murray-Rust, Acta Crystallogr. A Found. Adv. 70, C1736 (2014).

  13. Nomad Meta-Info, https://metainfo.nomad-coe.eu/nomadmetainfopublic/archive.html.

  14. Open Databases Integration for Materials Design, http://www.optimade.org.

  15. A. Merkys, N. Mounet, A. Cepellotti, N. Marzari, S. Gražulis, G. Pizzi, J. Cheminform. 9, 56 (2017).

    Google Scholar 

  16. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017).

    Google Scholar 

  17. TCOD Database, http://www.crystallography.net/tcod.

  18. Materials Cloud, https://www.materialscloud.org.

  19. N. Mounet, M. Gibertini, Ph. Schwaller, D. Campi, A. Merkys, A. Marrazzo, Th. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Nat. Nanotechnol. 13, 246 (2018).

    Google Scholar 

  20. N. Mounet, M. Gibertini, Ph. Schwaller, D. Campi, A. Merkys, A. Marrazzo, Th. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Materials Cloud Archive (2017), https://dx.doi.org/10.24435/materialscloud:2017.0008/v1.

  21. M.I. Aroyo, Ed., International Tables for Crystallography A Space-Group Symmetry, 6th ed. (Wiley, 2016).

  22. A. Togo, I. Tanaka, Phys. Rev. B Condens. Matter 87, 184104 (2013).

    Google Scholar 

  23. R.W. Grosse-Kunstleve, P.D. Adams, Acta Crystallogr. A 55, 383 (1999).

    Google Scholar 

  24. R.W. Grosse-Kunstleve, P.D. Adams, Acta Crystallogr. A 58, 60 (2002).

    Google Scholar 

  25. S.R. Hall, Acta Crystallogr. A 37, 517 (1981).

    Google Scholar 

  26. U. Shmueli, Ed., International Tables for Crystallography B Reciprocal Space, 3rd ed. (Springer, Dordrecht, The Netherlands, 2008).

  27. Y. Hinuma, A. Togo, H. Hayashi, I. Tanaka, Condens. Matter Mater. Sci. (2015), https://arxiv.org/abs/1506.01455.

  28. E. Parthé, L.M. Gelato, Acta Crystallogr. A 40, 169 (1984).

    Google Scholar 

  29. R.W. Grosse-Kunstleve, N.K. Sauter, P.D. Adams, Acta Crystallogr. A 60, 1 (2004).

    Google Scholar 

  30. Bilbao Crystallographic Server, http://www.cryst.ehu.es.

  31. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010).

    Google Scholar 

  32. seekpath, http://github.com/giovannipizzi/seekpath.

  33. AiiDA Plugins for Quantum ESPRESSO, http://github.com/aiidateam/aiidaquantumespresso.

  34. B. Kozinsky, S. Akhade, P. Hirel, A. Hashibon, C. Elsässer, P. Mehta, A. Logeat, U. Eisele, Phys. Rev. Lett. 116, 055901 (2016).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the team of AiiDA developers,35 as well as the contributors to AiiDA, spglib, and seekpath. G.P. acknowledges support from the MARVEL NCCR of the Swiss National Science Foundation and from the EU MaX Centre of Excellence (Grant 676598); A.T. from MEXT Japan through ESISM (Elements Strategy Initiative for Structural Materials) of Kyoto University; B.K. from Robert Bosch LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pizzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzi, G., Togo, A. & Kozinsky, B. Provenance, workflows, and crystallographic tools in materials science: AiiDA, spglib, and seekpath. MRS Bulletin 43, 696–702 (2018). https://doi.org/10.1557/mrs.2018.203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.203

Navigation