Skip to main content
Log in

Scanning ultrafast electron microscopy: Four-dimensional imaging of materials dynamics in space and time

  • Ultrafast Imaging of Materials Dynamics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Conventional electron microscopy during the last three decades has experienced tremendous developments, especially in equipment design and engineering, to become one of the most widely recognized and powerful tools for key research areas in materials science and nanotechnology. In this article, we discuss scanning ultrafast electron microscopy (S-UEM) as a new methodology for four-dimensional electron imaging of material surfaces. We also illustrate a few unique applications. By monitoring secondary electrons emitted from surfaces of photoactive materials, photo- and electron-impact-induced electrons and holes near surfaces, interfaces, and heterojunctions can be imaged with adequate spatial and temporal resolution. Charge separation, transport, and anisotropic motions as well as their dependence on carrier energies can be resolved. S-UEM is poised to directly image and visualize relevant interfacial dynamics in real space and time for emerging optoelectronic devices and help push their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Science 347, 1246501 (2015).

    Google Scholar 

  2. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, ACS Nano 9, 11509 (2015).

    Google Scholar 

  3. J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016).

    Google Scholar 

  4. A.E. Minovich, A.E. Miroshnichenko, A.Y. Bykov, T.V. Murzina, D.N. Neshev, Y.S. Kivshar, Laser Photon. Rev. 9, 195 (2015).

    Google Scholar 

  5. A.H. Zewail, J. Phys. Chem. A 104, 5660 (2000).

    Google Scholar 

  6. A. Othonos, J. Appl. Phys. 83, 1789 (1998).

    Google Scholar 

  7. N.A. Anderson, T. Lian, Annu. Rev. Phys. Chem. 56, 491 (2005).

    Google Scholar 

  8. L.Y. Zhang, Y. Yang, Y.T. Kao, L.J. Wang, D.P. Zhong, J. Am. Chem. Soc. 131, 10677 (2009).

    Google Scholar 

  9. S.R. Cowan, N. Banerji, W.L. Leong, A.J. Heeger, Adv. Funct. Mater. 22, 1116 (2012).

    Google Scholar 

  10. E.M. Grumstrup, M.M. Gabriel, E.E.M. Cating, E.M. Van Goethem, J.M. Papanikolas, Chem. Phys. 458, 30 (2015).

    Google Scholar 

  11. D.Y. Davydova, A. de la Cadena, D. Akimov, B. Dietzek, Laser Photon. Rev. 10, 62 (2016).

    Google Scholar 

  12. Z. Guo, Y. Wan, M.J. Yang, J. Snaider, K. Zhu, L.B. Huang, Science 356, 59 (2017).

    Google Scholar 

  13. V.A. Lobastov, R. Srinivasan, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 102, 7069 (2005).

    Google Scholar 

  14. A.H. Zewail, Annu. Rev. Phys. Chem. 57, 65 (2006).

    Google Scholar 

  15. A.H. Zewail, Science 328, 187 (2010).

    Google Scholar 

  16. B. Barwick, D.J. Flannigan, A.H. Zewail, Nature 462, 902 (2009).

    Google Scholar 

  17. D.J. Flannigan, A.H. Zewail, Acc. Chem. Res. 45, 1828 (2012).

    Google Scholar 

  18. D.J. Flannigan, A.M. Lindenberg, MRS Bull. 43 (7), 485 (2018).

    Google Scholar 

  19. A. Feist, G. Storeck, S. Schäfer, C. Ropers, MRS Bull. 43 (7), 504 (2018).

    Google Scholar 

  20. E. Pomarico, Y.-J. Kim, F.J. García de Abajo, O.-H. Kwon, F. Carbone, R.M. van der Veen, MRS Bull. 43 (7), 497 (2018).

    Google Scholar 

  21. D.-S. Yang, O.F. Mohammed, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 107, 14993 (2010).

    Google Scholar 

  22. O.F. Mohammed, D.-S. Yang, S.K. Pal, A.H. Zewail, J. Am. Chem. Soc. 133, 7708 (2011).

    Google Scholar 

  23. J.Y. Sun, V.A. Melnikov, J.I. Khan, O.F. Mohammed, J. Phys. Chem. Lett. 6, 3884 (2015).

    Google Scholar 

  24. T. Hosokawa, H. Fujioka, K. Ura, Rev. Sci. Instrum. 49, 624 (1978).

    Google Scholar 

  25. M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M.H. Baier, E. Kapon, B. Deveaud, J.D. Ganière, Nature 438, 479 (2005).

    Google Scholar 

  26. B.S. Shaheen, J.Y. Sun, D.-S. Yang, O.F. Mohammed, J. Phys. Chem. Lett. 8, 2455 (2017).

    Google Scholar 

  27. D.-S. Yang, O.F. Mohammed, A.H. Zewail, Angew. Chem. Int. Ed. Engl. 52, 2897 (2013).

    Google Scholar 

  28. A. Feist, N. Bach, N. Rubiano da Silva, T. Danz, M. Möller, K.E. Priebe, T. Domröse, J.G. Gatzmann, S. Rost, J. Schauss, S. Strauch, R. Bormann, M. Sivis, S. Schäfer, C. Ropers, Ultramicroscopy 176, 63 (2017).

    Google Scholar 

  29. J.Y. Sun, A. Adhikari, B.S. Shaheen, H.Z. Yang, O.F. Mohammed, J. Phys. Chem. Lett. 7, 985 (2016).

    Google Scholar 

  30. E. Najafi, B. Liao, T. Scarborough, A. Zewail, Ultramicroscopy 184, 46 (2018).

    Google Scholar 

  31. T.E. Everhart, R.F.M. Thornley, J. Sci. Instrum. 37, 246 (1960).

    Google Scholar 

  32. J.W. Cho, T.Y. Hwang, A.H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 111, 2094 (2014).

    Google Scholar 

  33. E. Najafi, T.D. Scarborough, J. Tang, A.H. Zewail, Science 347, 164 (2015).

    Google Scholar 

  34. B. Liao, E. Najafi, H. Li, A.J. Minnich, A.H. Zewail, Nat. Nanotechnol. 12, 871 (2017).

    Google Scholar 

  35. E. Najafi, V. Ivanov, A. Zewail, M. Bernardi, Nat. Commun. 8, 15177 (2017).

    Google Scholar 

  36. W. Van Roosbroeck, H.C. Casey Jr., Phys. Rev. B Condens. Matter 5, 2154 (1972).

    Google Scholar 

  37. B. Liao, H. Zhao, E. Najafi, X.D. Yan, H. Tian, J. Tice, A.J. Minnich, H. Wang, A.H. Zewail, Nano Lett. 17, 3675 (2017).

    Google Scholar 

  38. R. Bose, A. Bera, M.R. Parida, A. Adhikari, B.S. Shaheen, E. Alarousu, J. Sun, T. Wu, O.M. Bakr, O.F. Mohammed, Nano Lett. 16, 4417 (2016).

    Google Scholar 

  39. R. Bose, J. Sun, J.I. Khan, B.S. Shaheen, A. Adhikari, T.K. Ng, V.M. Burlakov, M.R. Parida, D. Priante, A. Goriely, B.S. Ooi, O.M. Bakr, O.F. Mohammed, Adv. Mater. 28, 5106 (2016).

    Google Scholar 

  40. J.I. Khan, A. Adhikari, J. Sun, D. Priante, R. Bose, B.S. Shaheen, T.K. Ng, C. Zhao, O.M. Bakr, B.S. Ooi, O.F. Mohammed, Small 12, 2313 (2016).

    Google Scholar 

  41. R. Bose, A. Adhikari, V.M. Burlakov, G. Liu, M.A. Haque, D. Priante, M.N. Hedhili, N. Wehbe, C. Zhao, H. Yang, T.K. Ng, A. Goriely, O.M. Bakr, T. Wu, B.S. Ooi, O.F. Mohammed, ACS Energy Lett. 3, 476 (2018).

    Google Scholar 

  42. M. Zani, V. Sala, G. Irde, S.M. Pietralunga, C. Manzoni, G. Cerullo, G. Lanzani, A. Tagliaferri, Ultramicroscopy 187, 93 (2018).

    Google Scholar 

Download references

Acknowledgments

D.-S.Y. acknowledges support from a National Science Foundation CAREER Award (Grant No. CHE-1653903) and from the R.A. Welch Foundation (Grant No. E-1860). B.L. is supported by a startup fund from the University of California, Santa Barbara. O.F.M acknowledges funding support from King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Shyue Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DS., Liao, B. & Mohammed, O.F. Scanning ultrafast electron microscopy: Four-dimensional imaging of materials dynamics in space and time. MRS Bulletin 43, 491–496 (2018). https://doi.org/10.1557/mrs.2018.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.149

Navigation