Skip to main content
Log in

Multiferroics: Past, present, and future

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article provides a personal guided tour of multiferroic materials, from their early days as a theoretical curiosity, to their position today as a focus of worldwide research activity poised to impact technology. The article begins with the history of, and the answer to, the question of why so few magnetic ferroelectric multiferroics exist, then gives a survey of the mechanisms and materials that support such multiferroicity. After discussing the tremendous progress that has been made in the magnetoelectric control of magnetic properties using an electric field, some unusual applications of multiferroics in high-energy physics and cosmology are outlined. Finally, the most interesting open questions and future research directions are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. N.A. Spaldin, M. Fiebig, Science 15, 5733 (2005).

    Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).

    Google Scholar 

  3. N.A. Spaldin, Science 349, 110 (2015).

    Google Scholar 

  4. J.M. Rondinelli, A.S. Eidelson, N.A. Spaldin, Phys. Rev. B Condens. Matter 79, 205119 (2009).

    Google Scholar 

  5. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media, Course of Theoretical Physics (Pergamon Press, Bristol, UK, 1960), vol. 8.

    Google Scholar 

  6. I.E. Dzyaloshinskii, J. Exp. Theor. Phys. 37, 881 (1959).

    Google Scholar 

  7. D.N. Astrov, J. Exp. Theor. Phys. 40, 1035 (1961).

    Google Scholar 

  8. H. Schmid, Ferroelectrics 427, 1 (2012).

    Google Scholar 

  9. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003).

    Google Scholar 

  10. https://www2.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html.

  11. C. Tabares-Muñoz, Synthèse et Caractérisation de Monocristaux de la Perovskite Ferroélectrique/Ferroélastique/Antiferromagnétique BiFeO3, PhD thesis No. 2191, University of Geneva, Switzerland (1986).

  12. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5, 823 (2006).

    Google Scholar 

  13. Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nat. Mater. 7, 478 (2008).

    Google Scholar 

  14. J.T. Heron, J.L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J.D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D.C. Ralph, D.G. Schlom, J. Iniguez, B.D. Huey, R. Ramesh, Nature 516, 370 (2014).

    Google Scholar 

  15. B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, Nat. Mater. 3, 164 (2004).

    Google Scholar 

  16. S. Artyukhin, K.T. Delaney, N.A. Spaldin, M. Mostovoy, Nat. Mater. 13, 42 (2014).

    Google Scholar 

  17. S.M. Griffin, M. Lilienblum, K.T. Delaney, Y. Kumagai, M. Fiebig, N.A. Spaldin, Phys. Rev. X 2, 041022 (2012).

    Google Scholar 

  18. K.Z. Rushchanskii, S. Kamba, V. Goian, P. Vanek, M. Savinov, J. Prokleska, D. Nuzhnyy, K. Knizek, F. Laufek, S. Eckel, S.K. Lamoreaux, A.O. Sushkov, M. Lezaic, N.A. Spaldin, Nat. Mater. 9, 649 (2010).

    Google Scholar 

  19. S. Eckel, A.O. Sushkov, S.K. Lamoreaux, Phys. Rev. Lett. 109, 193003 (2012).

    Google Scholar 

  20. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 8, 229 (2009).

    Google Scholar 

  21. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (2010).

    Google Scholar 

  22. M. Fechner, N.A. Spaldin, I.E. Dzyaloshinskii, Phys. Rev. B Condens. Matter 89, 184415 (2014).

    Google Scholar 

  23. N.A. Spaldin, M. Fiebig, M. Mostovoy, J. Phys. Condens. Matter 20, 434203 (2008).

    Google Scholar 

  24. S.V. Kalinin, N.A. Spaldin, Science 341, 858 (2013).

    Google Scholar 

  25. M. Fechner, M.J.A. Fierz, F. Thöle, U. Staub, N.A. Spaldin, Phys. Rev. B Condens. Matter 93, 174419 (2016).

    Google Scholar 

  26. J.M. Edge, Y. Kadem, U. Aschauer, N.A. Spaldin, A.V. Balatsky, Phys. Rev. Lett. 115, 247002 (2015).

    Google Scholar 

  27. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, Nat. Rev. Mater. 1, 16046 (2016).

    Google Scholar 

  28. J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. 23, 1062 (2011).

    Google Scholar 

  29. N.A. Spaldin, R. Ramesh, MRS Bull. 33, 1047 (2008).

    Google Scholar 

  30. N.A. Spaldin, S.-W. Cheong, R. Ramesh, Phys. Today 63, 38 (2010).

    Google Scholar 

  31. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Spaldin.

Additional information

The following article is based on a Symposium X (Frontiers of Materials Research) presentation given by Nicola A. Spaldin at the 2016 MRS Fall Meeting in Boston, Mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spaldin, N.A. Multiferroics: Past, present, and future. MRS Bulletin 42, 385–390 (2017). https://doi.org/10.1557/mrs.2017.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.86

Navigation