Skip to main content
Log in

Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious

  • Materials Enabling Nanofluidic Flow Enhancement
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Carbon materials exist in a large number of allotropic forms and exhibit a wide range of physical and chemical properties. From the perspective of fluidics, particularly within the confines of the nanoscale afforded by one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene structures, many unique properties have been discovered. However, other questions, such as the link between electronic states and hydrodynamics and accurate model predictions of transport, remain unanswered. Theoretical studies, experiments in large-scale ensembles of CNTs and stacked graphene sheets, and precise measurements at the single-pore and single-molecule level have helped in our understanding. These activities have led to explosive growth in the field, now known as carbon nanofluidics. The ability to produce membranes and devices from fluid phases of graphene oxide, which retain these special properties in molecular-scale flow channels, promises realization of applications in the near term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001).

    Google Scholar 

  2. A.I. Skoulidas , D.M. Ackerman , J.K. Johnson , D.S. Sholl , Phys. Rev. Lett. 89, 185901 (2002).

    Google Scholar 

  3. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Science 303, 62 (2004).

    Google Scholar 

  4. J.K.Holt, H.G. Park, Y.Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, O. Bakajin, Science 312, 1034 (2006).

    Google Scholar 

  5. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005).

    Google Scholar 

  6. M. Majumder, N. Chopra, B.J. Hinds, ACS Nano 5, 3867 (2011).

    Google Scholar 

  7. S. Joseph, N.R. Aluru, Nano Lett. 8, 452 (2008).

    Google Scholar 

  8. J.A. Thomas, A.J.H. McGaughey, Nano Lett. 8, 2788 (2008).

    Google Scholar 

  9. K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Nano Lett. 10, 4067 (2010).

    Google Scholar 

  10. L. Bocquet, E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010).

    Google Scholar 

  11. C.Y. Lee, W. Choi, J.-H. Han, M.S. Strano, Science 329, 1320 (2010).

    Google Scholar 

  12. H. Ago, T. Kugler, F. Cacialli, W.R. Salanech, M.S.P. Shafer, A.H. Windle, R.H. Friend, J. Phys. Chem. B 103, 8116 (1999).

    Google Scholar 

  13. H. Liu, J. He, J. Tang, H. Liu, P. Pang, D. Cao, P. Krstic, J.S. Lindsay, C. Nuckolls, Science 327, 64 (2010).

    Google Scholar 

  14. L. Liu, C. Yang, K. Zhao, J. Li, H.-C. Wu, Nat. Commun. 4, 2989 (2013).

    Google Scholar 

  15. J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, L.R. Comolli F.I. Allen, A.V. Shnyrova, K.R. Cho, D. Munoz, Y.M. Wang, C.P. Grigoropoulos, C.M. Ajo-Franklin, V.A. Frolov, A. Noy, Nature 514, 612 (2014).

    Google Scholar 

  16. A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, L. Bocquet, Nature 494, 455 (2013).

    Google Scholar 

  17. E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Nature 537 210 (2016).

    Google Scholar 

  18. E. Secchi, A. Niguès, L. Jubin, A. Siria, L. Bocquet, Phys. Rev. Lett. 116, 154501 (2016).

    Google Scholar 

  19. S. Guo, S.F. Buchsbaum, E.R. Meshot, M.W. Davenport, Z. Siwy, F. Fornasiero, Biophys. J. 108, 175a (2015).

    Google Scholar 

  20. J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Nature 536, 197 (2016).

    Google Scholar 

  21. G. Tocci, L. Joly, A. Michaelides, Nano Lett. 14, 6872 (2014).

    Google Scholar 

  22. B. Grosjean, C. Pean, A. Siria, L. Bocquet, R. Vuilleumier, M.-L. Bocquet, J. Phys. Chem. Lett. 7, 4695 (2016).

    Google Scholar 

  23. J.R. Werber, A. Deshmukh, M. Elimelech, Environ. Sci. Technol. Lett. 3, 112 (2016).

    Google Scholar 

  24. S.C. O’Hern, M.S.H. Boutilier, J.C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Nano Lett. 14, 1234 (2014).

    Google Scholar 

  25. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai S.M. Mahurin, Nat. Nanotechnol. 10, 459 (2015).

    Google Scholar 

  26. S. Hu, M. Lozada-Hidalgo, F.C. Wang, A. Mishchenko, F. Schedin, R.R. Nair E.W. Hill, D.W. Boukhvalov, M.I. Katsnelson, R.A.W. Dryfe, I.V. Grigorieva, H.A. Wu, A.K. Geim, Nature 516, 227 (2014).

    Google Scholar 

  27. K. Celebi, J. Buchheim, R.M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.L. Kye, C. Lee, H.G. Park, Science 344, 289 (2014).

    Google Scholar 

  28. B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Nature 538, 222 (2016).

    Google Scholar 

  29. S. Gravelle, C. Ybert, L. Bocquet, L. Joly, Phys. Rev. E 93, 033123 (2016).

    Google Scholar 

  30. K. Raidongia, J. Huang, J. Am. Chem. Soc. 134, 16528 (2012).

    Google Scholar 

  31. J.E. Kim, T.H. Han, S.H. Lee, J.Y Kim, C.W. Ahn, J.M. Yun, S.O. Kim, Angew. Chem. Int. Ed. Engl. 50, 3043 (2011).

    Google Scholar 

  32. R. Tkacz, R. Oldenbourg, S.B. Mehta, M. Miansari, A. Verma, M. Majumder Chem. Commun. 50, 6668 (2014).

    Google Scholar 

  33. A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani, P. Chakraborty-Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Nat. Commun. 7, 10891 (2016).

    Google Scholar 

  34. S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Desalination 371, 78 (2015).

    Google Scholar 

  35. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva. H.A. Wu, A.K. Geim, R.R. Nair, Science 343, 752 (2014).

    Google Scholar 

  36. H.W. Kim, H.W. Yoon, S.-M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Science 342, 91 (2013).

    Google Scholar 

  37. R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Science 335, 442 (2012).

    Google Scholar 

  38. M. Hu, B. Mi, Environ. Sci. Technol. 47, 3715 (2013).

    Google Scholar 

  39. C.A. Amadei, C.D. Vecitis, J. Phys. Chem. Lett. 7, 3791 (2016).

    Google Scholar 

  40. H. Yoshida, L. Bocquet, J. Chem. Phys. 144, 234701 (2016).

    Google Scholar 

  41. S.T. Martin, A. Neild, M. Majumder, APL Mater. 2, 092803 (2014).

    Google Scholar 

  42. S. Martin, A. Akbari, P. Chakraborty Banerjee, A. Neild, M. Majumder, Phys. Chem. Chem. Phys. 18, 32185 (2016).

    Google Scholar 

  43. S. Gravelle, H. Yoshida, L. Joly, C. Ybert, L. Bocquet, J. Chem. Phys. 145, 124708 (2016).

    Google Scholar 

  44. K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, W. Jin, Angew. Chem. Int. Ed. 53, 6929 (2014).

    Google Scholar 

  45. M. Shaibani, A. Akbari, P. Sheath, C.D. Easton, P. Chakraborty Banerjee, K. Konstas, A. Fakhfouri, M. Barghamadi, M.M. Musameh, A.S. Best, T. Rüther, P.J. Mahon, M.R. Hill, A.F. Hollenkamp, M. Majumder, ACS Nano 10, 7768 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, M., Siria, A. & Bocquet, L. Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious. MRS Bulletin 42, 278–282 (2017). https://doi.org/10.1557/mrs.2017.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.62

Navigation