Skip to main content
Log in

Anomalous behavior of fluid flow through thin carbon nanotubes

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation is used to study flow rate behavior of monoatomic fluid through carbon nanotube (CNT) against the pore diameter. All armchair and zigzag CNTs with diameters below 1.5 nm were considered. Fluid flow rate versus diameter is investigated, and discrepancy was observed in the results. Its non-monotonic behavior is reported and attributed to diameter-dependent potential energy landscape in CNT. Effects of CNT length and pressure difference on flow rate as well as radial distribution function were examined as an additional check to ensure that the physical behavior of the model is correct. The deviation of fluid atoms from the minimum point in potential function is found to be significantly effective on the fluid–solid friction force experienced by fluid atoms, and consequently on the flow rate values. Also, investigating short periods of time shows that fluid atoms move discontinuously in the course of their passage through CNT. Consequently, distribution of atoms shows certain dense spots, similar to peaks in radial distribution which is well known and examined in the previous literature. Extremely low flow rate in some cases of CNT diameter and chirality shows that care should be taken in designing novel nanoscale devices which are built based on fluid flow and its properties in CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee, J., Jeong, S., Liu, Z.: Progress and challenges of carbon nanotube membrane in water treatment. Crit. Rev. Environ. Sci. Technol. 46, 999–1046 (2016). https://doi.org/10.1080/10643389.2016.1191894

    Article  Google Scholar 

  2. Ma, L., Dong, X., Chen, M., et al.: Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes (Basel) (2017). https://doi.org/10.3390/membranes7010016

    Article  Google Scholar 

  3. Cao, B.Y., Sun, J., Chen, M., Guo, Z.Y.: Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. Int. J. Mol. Sci. 10, 4638–4706 (2009). https://doi.org/10.3390/ijms10114638

    Article  Google Scholar 

  4. Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)

    Article  Google Scholar 

  5. Nayak, A.K.: An analysis of steady/unsteady electroosmotic flows through charged cylindrical nano-channels. Theor. Comput. Fluid Dyn. 27, 885–902 (2013). https://doi.org/10.1007/s00162-013-0295-0

    Article  Google Scholar 

  6. Majumder, M., Chopra, N., Hinds, B.J.: Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5, 3867–3877 (2011). https://doi.org/10.1021/nn200222g

    Article  Google Scholar 

  7. Cannon, J., Hess, O.: Fundamental dynamics of flow through carbon nanotube membranes. Microfluid Nanofluid. 8, 21–31 (2010). https://doi.org/10.1007/s10404-009-0446-1

    Article  Google Scholar 

  8. Ahmed, S.B., Zhao, Y., Fang, C., Su, J.: Transport of a simple liquid through carbon nanotubes: Role of nanotube size. Phys. Lett. Sect. A Gen. At. Solid State Phys. 381, 3487–3492 (2017). https://doi.org/10.1016/j.physleta.2017.09.003

    Article  Google Scholar 

  9. Su, J., Yang, K., Huang, D.: Ultra-fast single-file transport of a simple liquid beyond the collective behavior zone. Phys. Chem. Chem. Phys. 18, 20251–20255 (2016). https://doi.org/10.1039/c5cp07253k

    Article  Google Scholar 

  10. Sun, C., Lu, W.Q., Bai, B., Liu, J.: Transport properties of Ar-Kr binary mixture in nanochannel Poiseuille flow. Int. J. Heat Mass Transf. 55, 1732–1740 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.028

    Article  MATH  Google Scholar 

  11. Derakhshan, S., Rezaee, M., Sarrafha, H.: A molecular dynamics study of description models for shear viscosity in nanochannels: mixtures and effect of temperature. Nanoscale Microscale Thermophys. Eng. 19, 206–220 (2015). https://doi.org/10.1080/15567265.2015.1065527

    Article  Google Scholar 

  12. Nicholls, W.D., Borg, M.K., Reese, J.M.: Molecular dynamics simulations of liquid flow in and around carbon nanotubes, in ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010. ASMEDC, pp. 979–985 (2010)

  13. Huang, C., Nandakumar, K., Choi, P.Y.K., Kostiuk, L.W.: Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates. J. Chem. Phys. 124, 234701 (2006). https://doi.org/10.1063/1.2209236

    Article  Google Scholar 

  14. Huang, C., Choi, P.Y.K., Nandakumar, K., Kostiuk, L.W.: Investigation of entrance and exit effects on liquid transport through a cylindrical nanopore. Phys. Chem. Chem. Phys. 10, 186–192 (2008). https://doi.org/10.1039/B709575A

    Article  Google Scholar 

  15. Yang, Y., Yang, X., Liang, L., et al.: Large-area graphene-nanomesh/ carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 80(364), 1057–1062 (2019). https://doi.org/10.1126/science.aau5321

    Article  Google Scholar 

  16. Han, E.D., Kim, B.H., Seo, Y.H.: Experimental verification of Poiseuille flow in nanochannels. Jpn. J. Appl. Phys. 58, 065001 (2019). https://doi.org/10.7567/1347-4065/ab1b57

    Article  Google Scholar 

  17. McGinnis, R.L., Reimund, K., Ren, J., et al.: Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores. Sci. Adv. 4, e1700938 (2018). https://doi.org/10.1126/sciadv.1700938

    Article  Google Scholar 

  18. Sam, A., Vishnu Prasad, K., Sathian, S.P.: Water flow in carbon nanotubes: the role of tube chirality. Phys. Chem. Chem. Phys. 21, 6566–6573 (2019). https://doi.org/10.1039/c9cp00429g

    Article  Google Scholar 

  19. Won, C.Y., Joseph, S., Aluru, N.R.: Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes. J. Chem. Phys. 125, 114701 (2006). https://doi.org/10.1063/1.2338305

    Article  Google Scholar 

  20. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/JCPH.1995.1039

    Article  MATH  Google Scholar 

  21. Zhou, W., Wei, J., Tao, W.: A method for controlling absolute pressures at the entrance and exit of a nanochannel/nanotube. Microfluid Nanofluid. 23, 71 (2019). https://doi.org/10.1007/s10404-019-2239-5

    Article  Google Scholar 

  22. Darbandi, M., Khaledi-Alidusti, R., Sabouri, M., Abbasi, H.R.: Molecular dynamics study of fluid flows through slit-like nanochannels using two different driving systems, in ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010. ASMEDC, pp. 1029–1033 (2010)

  23. Barclay, P.L., Lukes, J.R.: Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion. Phys. Rev. E 94, 063303 (2016). https://doi.org/10.1103/PhysRevE.94.063303

    Article  Google Scholar 

  24. Wang, L., Dumont, R.S., Dickson, J.M.: Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. J. Chem. Phys. 137, 044102 (2012). https://doi.org/10.1063/1.4734484

    Article  Google Scholar 

  25. Zhao, Y., Chen, J., Huang, D., Su, J.: The role of interface ions in the control of water transport through a carbon nanotube. Langmuir 35, 13442–13451 (2019). https://doi.org/10.1021/acs.langmuir.9b01750

    Article  Google Scholar 

  26. Su, J., Guo, H.: Effect of nanochannel dimension on the transport of water molecules. J. Phys. Chem. B 116, 5925–5932 (2012). https://doi.org/10.1021/jp211650s

    Article  Google Scholar 

  27. Zhao, Y., Su, J.: Coupling transport of water and ions through a carbon nanotube in a pressure difference: the relation between dynamics and ion structures. J. Phys. Chem. C 122, 22178–22187 (2018). https://doi.org/10.1021/acs.jpcc.8b06792

    Article  Google Scholar 

  28. Bernardi, S., Todd, B.D., Searles, D.J.: Thermostating highly confined fluids. J. Chem. Phys. (2010). https://doi.org/10.1063/1.3450302

    Article  Google Scholar 

  29. Liu, B., Wu, R., Law, A.W.K., et al.: Channel morphology effect on water transport through graphene bilayers. Sci. Rep. (2016). https://doi.org/10.1038/srep38583

    Article  Google Scholar 

  30. Kannam, S.K., Todd, B.D., Hansen, J.S., Daivis, P.J.: How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701 (2013). https://doi.org/10.1063/1.4793396

    Article  Google Scholar 

  31. Wang, Y., He, Z., Gupta, K.M., et al.: Molecular dynamics study on water desalination through functionalized nanoporous graphene. Carbon N. Y. 116, 120–127 (2017). https://doi.org/10.1016/j.carbon.2017.01.099

    Article  Google Scholar 

  32. Suga, K., Mori, Y., Moritani, R., Kaneda, M.: Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes. Phys. Rev. E (2018). https://doi.org/10.1103/PhysRevE.97.053109

    Article  Google Scholar 

  33. Alexiadis, A., Kassinos, S.: Influence of water model and nanotube rigidity on the density of water in carbon nanotubes. Chem. Eng. Sci. 63, 2793 (2008)

    Article  Google Scholar 

  34. Ang, E.Y.M., Ng, T.Y., Yeo, J., et al.: Effects of oscillating pressure on desalination performance of transverse flow CNT membrane. Desalination (2019). https://doi.org/10.1016/j.desal.2018.03.029

    Article  Google Scholar 

  35. Chen, X., Cao, G., Han, A., et al.: Nanoscale fluid transport: size and rate effects. Nano Lett. 8, 2988–2992 (2008). https://doi.org/10.1021/nl802046b

    Article  Google Scholar 

  36. Zhou, X., Wang, C., Wu, F., et al.: The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube. J. Chem. Phys. (2013). https://doi.org/10.1063/1.4807383

    Article  Google Scholar 

  37. Shen, J.W., Kong, Z., Zhang, L., Liang, L.: Controlled interval of aligned carbon nanotubes arrays for water desalination: a molecular dynamics simulation study. Desalination 395, 28–32 (2016). https://doi.org/10.1016/j.desal.2016.05.024

    Article  Google Scholar 

  38. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  39. Khan, A.A.: Radial distribution functions of fluid argon. Phys. Rev. 134, A367–A384 (1964). https://doi.org/10.1103/PhysRev.134.A367

    Article  Google Scholar 

  40. Bruus, H.: Theoretical Microfluidics. Oxford University Press, Oxford (2008)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Mohammad Namvarpour, our research laboratory member, for his technical assistance, especially in generating visual graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojat Ghassemi.

Additional information

Communicated by Omar M. Knio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaee, M., Ghassemi, H. Anomalous behavior of fluid flow through thin carbon nanotubes. Theor. Comput. Fluid Dyn. 34, 177–186 (2020). https://doi.org/10.1007/s00162-020-00521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-020-00521-3

Keywords

Navigation