Skip to main content

Advertisement

Log in

A roadmap for future wide bandgap semiconductor power electronics

  • Power Electronics with Wide Bandgap Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Energy savings and efficient usage of electric power are some of the most urgent issues for future sustainable development of human society. Power electronics is recognized as a key technology in this regard, and the innovation of power electronics is increasingly required. The important role of power electronics innovations in the future human society and a technology roadmap of power electronics utilizing wide bandgap semiconductors, which are typically represented by silicon carbide, are presented. This roadmap consists of several different domains in technology, from the materials side to the applications side. On this roadmap, three generations are defined as technological streams. Based on this roadmap, recent progress in silicon carbide power electronics is reviewed, and future prospects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. P. Zacharias Ed., Use of Electronic-Based Power Conversion for Distributed and Renewable Energy Sources ( Institüt für Solare Energieversorgungstechnik, Verein an der Universität Kassel e.V., docupoint GmbH, Magdeburg, Germany, 2009 ).

  2. H. Okumura, J. IEICE 95 (11), 1003 ( 2012 ) ( in Japanese).

    Google Scholar 

  3. H. Okumura, J. IEICE 93 (11), 958 ( 2010 ) ( in Japanese ).

    Google Scholar 

  4. SIP, http://sip-cao.jp ( in Japanese ).

  5. The White House, “President Obama Announces New Public-Private Manufacturing Innovation Institute,” available at http://www.whitehouse. gov/the-press-office/2014/01/15/president-obama-announces-new-publicprivate-manufacturing-innovation-in. News release, January 15, 2014.

  6. State University of New York Polytechnic Institute Colleges of Nanoscale Science and Engineering, “New York Power Electronics Manufacturing Consortium (NY-PEMC),” available at http://www.sunycnse.com/LeadingEdge ResearchandDevelopment/CNSEResearchCentersPrograms/NYPowerElectronics/ManufacturingConsortium.aspx. News release, July 15, 2014.

  7. SPEED, “Project Abstract,” http://www.speed-fp7.org.

  8. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology, 1st ed. ( Wiley, Singapore, 2014 ).

    Google Scholar 

  9. T. Tsuji, T. Tawara, R. Tanuma, Y. Yonezawa, N. Iwamuro, K. Kosaka, H. Yurimoto, S. Kobayashi, H. Matsuhata, K. Fukuda, H. Okumura, K. Arai, Mater. Sci. Forum 645–648, 913 ( 2010 ).

    Article  Google Scholar 

  10. H. Fujiwara, T. Katsuno, T. Ishikawa, H. Naruoka, M. Konishi, T. Endo, Y. Watanabe, K. Tsuruta, S. Onda, A. Adachi, M. Nagao, K. Hamada, Mater. Sci. Forum 717–720, 911 ( 2012 ).

    Google Scholar 

  11. J. Senzaki, A. Shimozato, K. Kojima, T. Kato, Y. Tanaka, K. Fukuda, H. Okumura, Mater. Sci. Forum 717–720, 703 ( 2012 ).

    Article  Google Scholar 

  12. H. Jacobson, J.P. Bergman, C. Hallin, E. Janzén, T. Tuomi, H. Lendenmann, J. Appl. Phys. 95, 1485 ( 2004 ).

    Article  CAS  Google Scholar 

  13. J.W. Palmour, M. Das, S.-H. Ryu, B. Hull, Q. Zhang, R. Callanan, A. Agarwal, in Abstr. 8th Eur. Conf. Silicon Carbide & Related Materials ( Oslo, Norway, 2010), p. 17.

    Google Scholar 

  14. http://www.nssmc.com/news/old_nsc/detail/index.html?rec_id=4176.

  15. H. Kondo, H. Takaba, M. Yamada, Y. Urakami, T. Okamoto, M. Kobayashi, T. Masuda, I. Gunjishima, K. Shigeto, N. Ooya, N. Sugiyama, A. Matsuse, T. Kozawa, T. Sato, F. Hirose, S. Yamauchi, S. Onda, Mater. Sci. Forum 778–780, 17 ( 2014).

    Article  Google Scholar 

  16. H. Daikoku, M. Kado, H. Sakamoto, H. Suzuki, T. Bessho, K. Kusunoki, N. Yashiro, N. Okada, K. Moriguchi, K. Kamei, Mater. Sci. Forum 717–720, 61 ( 2012 ).

    Article  Google Scholar 

  17. Y. Ishida, T. Takahashi, K. Kojima, H. Okumura, K. Arai, S. Yoshida, Mater. Sci. Forum 457–460, 213 ( 2004 ).

    Article  Google Scholar 

  18. M. Ito, L. Storasta, H. Tsuchida, Appl. Phys. Express. 1, 015001 ( 2008 ).

    Article  Google Scholar 

  19. F. La Via, M. Camarda, A. Canino, A. Severino, A. La Magna, M. Mauceri, C. Vecchio, D. Crippa, Mater. Sci. Forum 740–742, 167 ( 2013 ).

    Article  Google Scholar 

  20. K. Danno, D. Nakamura, T. Kimoto, Appl. Phys Lett. 90, 202109 ( 2007 ).

    Article  Google Scholar 

  21. T. Kimoto, Y. Nanen, T. Hayashi, J. Suda, Appl. Phys. Express. 3, 121201 ( 2010 ).

    Article  Google Scholar 

  22. T. Miyazawa, M. Ito, H. Tsuchida, Appl. Phys. Lett. 97, 202106 ( 2010 ).

    Article  Google Scholar 

  23. S. Harada, M. Kato, K. Suzuki, M. Okamoto, T. Yatsuo, K. Fukuda, K. Arai, IEDM Tech. Dig. 903 ( 2006 ).

  24. Y. Nakano, T. Mukai, R. Nakamura, T. Nakamura, A. Kamisawa, Jpn. J. Appl. Phys. 48, 04C100 ( 2009 ).

    Google Scholar 

  25. Y. Tanaka, A. Takatsuka, T. Yatsuo, K. Arai, K. Yano, Abstr. Inst. Electrical Engineers of Japan Meeting 4, 222 ( 2010 ) ( in Japanese ).

    Google Scholar 

  26. Y. Tanaka, M. Okamoto, A. Takatsuka, K. Arai, T. Yatsuo, K. Yano, M. Kasuga, IEEE Electron Device Lett. 27, 908 ( 2006 ).

    Article  CAS  Google Scholar 

  27. T. Nakamura, Y. Nakano, M. Aketa, R. Nakamura, S. Mitani, H. Sakairi, Y. Yokotsuji, IEDM Tech. Dig. 599 ( 2011 ).

  28. D. Peters, H. Mitlehner, R. Elpelt, R. Schörner, D. Stephani, Proc. Eur. Conf. Power Electron. Appl. ( Toulouse, France, 2003 ), p. 935.

    Google Scholar 

  29. Z. Stum, A. Bolotnikov, P. Losee, K. Matocha, S. Arthur, J. Nasadoski, R. Rao, O.S. Saadeh, L. Stevanovic, R.L. Myers-Ward, C.R. Deey Jr., D.K. Gaskill, Mater. Sci. Forum 679–680, 637 ( 2011 ).

    Article  Google Scholar 

  30. K. Hamada, N. Miura, S. Hino, T. Kawakami, M. Imaizumi, H. Sumitani, T. Oomori, in Ext. Abstr. 2012 Int. Conf. Solid State Devices and Materials ( Kyoto, Japan, 2012 ), p. 897.

    Google Scholar 

  31. H. Kono, M. Furukawa, K. Ariyoshi, T. Suzuki, Y. Tanaka, T. Shinohe, in Ext. Abs. 2012 Int. Conf. Solid State Devices and Materials ( Kyoto, Japan, 2012 ), p. 468.

    Google Scholar 

  32. S. Harada, M. Kato, M. Shinozaki, Y. Kobayashi, K. Ariyoshi, T. Kojima, M. Sometani, J. Senzaki, Y. Tanaka, H. Okumura, in Abstr. 10th Euro. Conf. Silicon Carbide and Related Materials ( Grenoble, France, 2014 ), p. TU-P-LN-05.

    Google Scholar 

  33. R. Kosugi, Y. Sakuma, K. Kojima, S. Itoh, A. Nagata, T. Yatsuo, Y. Tanaka, H. Okumura, in Proc. 26th Int. Symp. Power Semiconductor Devices and ICs ( Waikoloa, HI, USA, 2014 ), p. 346.

    Google Scholar 

  34. S.H. Ryu, L. Cheng, S. Dhar, C. Capell, C. Jonas, J. Clayton, M. Donofrio, M. O’Loughlin, A. Burk, A. Agarwal, J. Palmour, Mater. Sci. Forum 717–720, 1135 ( 2012 ).

    Article  Google Scholar 

  35. H. Miyake, T. Okuda, H. Niwa, T. Kimoto, J. Suda, IEEE Electron Device Lett. 33, 1598 ( 2012 ).

    Article  CAS  Google Scholar 

  36. D. Okamoto, Y. Tanaka, N. Matsumoto, M. Mizukami, C. Ota, K. Takao, K. Fukuda, H. Okumura, Mater. Sci. Forum 740–742, 907 ( 2013 ).

    Article  Google Scholar 

  37. Y. Yonezawa, T. Mizushima, K. Takenaka, H. Fujisawa, T. Kato, S. Harada, Y. Tanaka, M. Okamoto, M. Sometani, D. Okamoto, N. Kumagai, S. Matsunaga, T. Deguchi, M. Arai, T. Hatakeyama, Y. Makifuchi, T. Araoka, N. Oose, T. Tsutsumi, M. Yoshikawa, K. Tatera, M. Harashima, Y. Sano, E. Morisaki, M. Takei, M. Miyajima, H. Kimura, A. Otsuki, K. Fukuda, H. Okumura, T. Kimoto, IEDM Tech. Dig. 661 ( 2013 ).

  38. DENSO, http://www.denso.co.jp/ja/news/newsreleases/2012/120517–01.html (in Japanese).

  39. Mitsubishi Electric, http://www.mitsubishielectric.co.jp/news/2012/0308.html (in Japanese).

  40. Y. Matsumoto, R. Yamada, Y. Kondo, Y. Ikeda, H. Kimura, in Proc. 1st IEEE Conf. Power Eng. Renew. Energy (ICPERE2012) ( Bali, Indonesia, 2012 ).

    Google Scholar 

  41. R. Simanjorang, H. Yamaguchi, H. Ohashi, K. Nakao, T. Ninomiya, S. Abe, M. Kaga, A. Fukui, in Proc. Appl. Power Electron. Conf. Expo. 2011 ( Fort Worth, TX, 2011 ), p. 600.

    Google Scholar 

  42. S. Sato, K. Matsui, Y. Zushi, Y. Murakami, S. Tanimoto, H. Sato, H. Yamaguchi, Mater. Sci. Forum 679–680, 738 ( 2011 ).

    Article  Google Scholar 

  43. Mitsubishi Electric, http://www.mitsubishielectric.co.jp/news/2012/0927-b.html (in Japanese).

  44. K. Takao, Y. Tanaka, K. Sung, K. Wada, T. Shinohe, T. Kanai, H. Ohashi, Proc. IEEE 2010 Energy Convers. Congr. Expo. ( Atlanta, GA, 2010 ), p. 4558.

    Book  Google Scholar 

Download references

Acknowledgments

The author greatly thanks T. Tanaka for investigating and discussing reported power device characteristics of various kinds of structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Okumura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, H. A roadmap for future wide bandgap semiconductor power electronics. MRS Bulletin 40, 439–444 (2015). https://doi.org/10.1557/mrs.2015.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.97

Navigation